我正在尝试通过创建一个字符文本的热编码来准备数据文件,以后我可以训练我的模型进行分类。我有一个由字符行组成的训练数据文件,我最初是对它们进行整数编码,然后是一个热编码。
e.g。这就是数据文件的外观:
这就是我接近它的方式:
import pandas as pd
from sklearn import preprocessing
categorical_data = pd.read_csv('abc.txt', sep="\n", header=None)
labelEncoder = preprocessing.LabelEncoder()
X = categorical_data.apply(labelEncoder.fit_transform)
print("Afer label encoder")
print(X.head())
oneHotEncoder = preprocessing.OneHotEncoder()
oneHotEncoder.fit(X)
onehotlabels = oneHotEncoder.transform(X).toarray()
print("Shape after one hot encoding:", onehotlabels.shape)
print(onehotlabels)
我得到每行的整数编码(在我的情况下为0,1,2),然后是后续的一个热编码向量。
我的问题是,如何对单个行中的每个字符进行预测,模型应该从一行中的字符(对应于某个标签)中学习。有人可以给我一些关于如何从那里开始的见解吗?
答案 0 :(得分:1)
鉴于您的示例,我最终得到了一个像这样的DataFrame:
0
0 0
1 1
2 2
根据您的描述,您似乎希望每一行都有自己独立的热编码。所以我们先来看看第1行。
afafalkjfalkfalfjalfjalfjafajfaflajflajflajfajflajflajfjaljfafj
您获得我上面包含的数据帧的原因是此行已被读入DataFrame,然后作为单个值传递给labelEncoder
和oneHotEncoder
,而不是63个值的数组(字符串的长度)。
你真正想做的是传递labelEncoder
一个63号的数组。
data = np.array([let for let in categorical_data[0][0]])
X = labelEncoder.fit_transform(data)
oneHotEncoder.fit(X.reshape(-1,1))
row_1_labels = oneHotEncoder.transform(X.reshape(-1,1)).toarray()
row_1_labels
array([[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 0., 1., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.]])
您可以为每一行重复此操作以获得独立的热编码。像这样:
one_hot_encodings = categorical_data.apply(lambda x: [oneHotEncoder.fit_transform(labelEncoder.fit_transform(np.array([let for let in x[0]])).reshape(-1,1)).toarray()], axis=1)
one_hot_encodings
0
0 [[1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0....
1 [[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,...
2 [[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,...
如果您希望根据所有行中找到的值对行进行热编码,则首先将labelEncoder
拟合为所有唯一字母,然后对每行进行转换。像这样:
unique_letters = np.unique(np.array([let for row in categorical_data.values for let in row[0]]))
labelEncoder.fit(unique_letters)
unique_nums = labelEncoder.transform(unique_letters)
oneHotEncoder.fit(unique_nums.reshape(-1,1))
cat_dat = categorical_data.apply(lambda x: [np.array([let for let in x[0]])], axis=1)
one_hot_encoded = cat_dat.apply(lambda x: [oneHotEncoder.transform(labelEncoder.transform(x[0]).reshape(-1,1)).toarray()], axis=1)
one_hot_encoded
0
0 [[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...
1 [[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,...
2 [[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,...
这将返回一个DataFrame,每行包含一个基于所有行的字母的热编码字母数组。