我需要将函数应用于我的df中的子集(depth1:depthN over nm1:nmN),该子集应使用列(t& s)和行作为输入(depth,temp& sal)。我的真实数据有170行,28到128行。我想计算一个如下公式:
x = z- [temp * (temp - tdev) + s * sal]
其中z是观察值
df <- matrix(c(
1.0277, 1.0051, 1.0059, 1.003, 1.009, 1.00E-04, -1.20E-05,
1.0019, 0.9841, 0.9769, 0.9809, 0.9815, 9.00E-05, -1.80E-05,
0.9755, 0.9601, 0.9531, 0.9587, 0.955, 6.00E-05, -2.00E-05,
0.9522, 0.9364, 0.9296, 0.9322, 0.931, 2.00E-05, -2.00E-05,
0.2, 0.4, 0.6, 0.8, 1, NA, NA,
15.327, 15.336, 15.356, 15.342, 14.853, NA, NA,
14.908, 14.916, 14.912, 14.9, 17.95, NA, NA
), nrow = 7, ncol = 7, byrow = TRUE,
dimnames = list(c("nm1","nm2","nm3","nm4","depth","temp","sal"),
c("depth1","depth2","depth3","depth4","depth5","t","s")))
df
depth1 depth2 depth3 depth4 depth5 t s
nm1 1.0277 1.0051 1.0059 1.003 1.009 1.00E-04 -1.20E-05
nm2 1.0019 0.9841 0.9769 0.9809 0.9815 9.00E-05 -1.80E-05
nm3 0.9755 0.9601 0.9531 0.9587 0.955 6.00E-05 -2.00E-05
nm4 0.9522 0.9364 0.9296 0.9322 0.931 2.00E-05 -2.00E-05
depth 0.2 0.4 0.6 0.8 1 NA NA
temp 15.327 15.336 15.356 15.342 14.853 NA NA
sal 14.908 14.916 14.912 14.95 17.95 NA NA
我认为将方程中使用的行(depth,temp&amp; sal)放在另一个df(df2)中并将它们从第一个中删除,使用相应的变量depth1:DepthN并用作LUT可能更好如下所示:
nm <- c("nm1", "nm2","nm3","nm4")
df1<-df[nm, ]
df1
depth1 depth2 depth3 depth4 depth5 t s
nm1 1.0277 1.0051 1.0059 1.003 1.009 1.00E-04 -1.20E-05
nm2 1.0019 0.9841 0.9769 0.9809 0.9815 9.00E-05 -1.80E-05
nm3 0.9755 0.9601 0.9531 0.9587 0.955 6.00E-05 -2.00E-05
nm4 0.9522 0.9364 0.9296 0.9322 0.931 2.00E-05 -2.00E-05
list2 <- c("depth", "temp","sal")
df2 <- subset(df,rownames(df) %in% list2, select = depth1:depth5)
df2 depth1 depth2 depth3 depth4 depth5
depth 0.2 0.4 0.6 0.8 1
temp 15.327 15.336 15.356 15.342 14.853
sal 14.908 14.916 14.912 14.95 17.95
我在dplyr中试过这个,没有成功:
tdev <- 17.2
df3<-transmute_at(df, vars(depth1:depth5), funs(.-abs(t*(df2[2,]- tdev)+s*df2[3,])))
有人有解决方案吗?
答案 0 :(得分:0)
这需要一些数据整理:
library(tidyverse)
df <- as.data.frame(df) %>%
rownames_to_column %>%
as_tibble #convert to tibble (not sure why you'd want a matrix?)
这就是我假设你需要的......不确定t和tdev是否是同一个东西,如果你需要任何分组。
df %>%
dplyr::filter(rowname != "depth",
rowname != "temp",
rowname != "sal") %>%
gather(var, z, -rowname, -t, -s) %>% ## filter from wide to long (i.e. tidy) format
full_join(df %>%
dplyr::select(-t, -s) %>%
dplyr::filter(!grepl("nm", rowname)) %>%
gather(var, val, -rowname) %>%
spread(key = rowname, val)) %>% ## join to the rest of your df
mutate(x = z- (temp * (temp - t) + s * sal))