我有一个数据框,取决于列Order
的值,我想获取列Value
的值并进行一些计算。
DataFrame1
Order Shares Value
2011-01-10 BUY 1300 340.99
2011-01-10 SELL 1200 340.99
2011-01-11 SELL 1100 330.99
代码行:
impacts['NewValue']=float(impacts.Order.apply(lambda x: (impacts.Value + (impacts.Value * 0.006)) if x == 'SELL' else (impacts.Value - (impacts.Value * 0.006))))
错误:
TypeError:ufunc' multiply'不包含带有签名匹配类型的循环dtype(' S32')dtype(' S32')dtype(' S32')
我的理解是错误是由数字的内容引起的,因此我试图将其转换为浮点数。
预期输出
Order Shares Value NewValue
2011-01-10 BUY 1300 340.99 338.94
2011-01-10 SELL 1200 340.99 343.03
2011-01-11 SELL 1100 330.99 332.97
任何帮助都非常受欢迎。谢谢!
答案 0 :(得分:1)
希望它有所帮助:-)(仅修改您自己的代码,您的示例代码将返回错误)
df.apply(lambda x: (x.Value + (x.Value * 0.006)) if x.Order == 'SELL' else (x.Value - (x.Value * 0.006)),axis=1)
Out[790]:
2011-01-10 338.94406
2011-01-10 343.03594
2011-01-11 332.97594
dtype: float64
获取df
df['NewValue']=df.apply(lambda x: (x.Value + (x.Value * 0.006)) if x.Order == 'SELL' else (x.Value - (x.Value * 0.006)),axis=1)
df
Out[792]:
Order Shares Value NewValue
2011-01-10 BUY 1300 340.99 338.94406
2011-01-10 SELL 1200 340.99 343.03594
2011-01-11 SELL 1100 330.99 332.97594
我将使用np.where
import numpy as np
np.where(df.Order=='SELL',(df.Value + (df.Value * 0.006)),(df.Value - (df.Value * 0.006)) )
Out[794]: array([ 338.94406, 343.03594, 332.97594])
分配后
df['NewValue']=np.where(df.Order=='SELL',(df.Value + (df.Value * 0.006)),(df.Value - (df.Value * 0.006)) )
df
Out[796]:
Order Shares Value NewValue
2011-01-10 BUY 1300 340.99 338.94406
2011-01-10 SELL 1200 340.99 343.03594
2011-01-11 SELL 1100 330.99 332.97594
答案 1 :(得分:1)
(评论太长了)以下是温家宝的np.where
稍微简洁一点:
i = np.where(df.Order == 'SELL', 1, -1) * 0.006
df.Value = df.Value.mul(i) + df.Value
print(df.Value)
2011-01-10 338.94406
2011-01-10 343.03594
2011-01-11 332.97594
dtype: float64
使用df.Order
确定操作前的标志。