我正在使用Spark 2.2,并且在spark.createDataset
Seq
Map
上尝试拨打// createDataSet on Seq[T] where T = Int works
scala> spark.createDataset(Seq(1, 2, 3)).collect
res0: Array[Int] = Array(1, 2, 3)
scala> spark.createDataset(Seq(Map(1 -> 2))).collect
<console>:24: error: Unable to find encoder for type stored in a Dataset.
Primitive types (Int, String, etc) and Product types (case classes) are
supported by importing spark.implicits._
Support for serializing other types will be added in future releases.
spark.createDataset(Seq(Map(1 -> 2))).collect
^
// createDataSet on a custom case class containing Map works
scala> case class MapHolder(m: Map[Int, Int])
defined class MapHolder
scala> spark.createDataset(Seq(MapHolder(Map(1 -> 2)))).collect
res2: Array[MapHolder] = Array(MapHolder(Map(1 -> 2)))
时遇到了麻烦。
我的Spark Shell会话的代码和输出如下:
import spark.implicits._
我已经尝试了override func perform(_ aSelector: Selector!) -> Unmanaged<AnyObject>! {
//CODE
}
,虽然我很确定它是由Spark shell会话隐式导入的。
这是当前编码器未涵盖的情况吗?
答案 0 :(得分:7)
2.2未涵盖,但可以轻松解决。您可以使用Encoder
明确地添加所需的ExpressionEncoder
:
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
spark
.createDataset(Seq(Map(1 -> 2)))(ExpressionEncoder(): Encoder[Map[Int, Int]])
或implicitly
:
implicit def mapIntIntEncoder: Encoder[Map[Int, Int]] = ExpressionEncoder()
spark.createDataset(Seq(Map(1 -> 2)))
答案 1 :(得分:2)
仅供参考,上述表达式仅适用于Spark 2.3(截至this commit,如果我没有记错的话)。
scala> spark.version
res0: String = 2.3.0
scala> spark.createDataset(Seq(Map(1 -> 2))).collect
res1: Array[scala.collection.immutable.Map[Int,Int]] = Array(Map(1 -> 2))
我认为这是因为newMapEncoder
现在是spark.implicits
的一部分。
scala> :implicits
...
implicit def newMapEncoder[T <: scala.collection.Map[_, _]](implicit evidence$3: reflect.runtime.universe.TypeTag[T]): org.apache.spark.sql.Encoder[T]
您可以通过使用以下技巧“禁用”隐式,并尝试上述表达式(这将导致错误)。
trait ThatWasABadIdea
implicit def newMapEncoder(ack: ThatWasABadIdea) = ack
scala> spark.createDataset(Seq(Map(1 -> 2))).collect
<console>:26: error: Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for serializing other types will be added in future releases.
spark.createDataset(Seq(Map(1 -> 2))).collect
^