我正在尝试根据其中一列中的子字符串过滤python数据框。
如果ID字段的第13位和第14位的数字是< = 9,我想保留该行,如果它是> 9,我想放弃这一行。
示例:
ABCD-3Z-A93Z-01A-11R-A37O-07 - >保持
ABCD-3Z-A93Z-11A-11R-A37O-07 - >降
我已经设法达到以下解决方案,但我认为必须有一种更快,更有效的方法。
import pandas as pd
# Enter some data. We want to filter out all rows where the number at pos 13,14 > 9
df = {'ID': ['ABCD-3Z-A93Z-01A-11R-A37O-07', 'ABCD-6D-AA2E-11A-11R-A37O-07', 'ABCD-6D-AA2E-01A-11R-A37O-07',
'ABCD-A3-3307-01A-01R-0864-07', 'ABCD-6D-AA2E-01A-11R-A37O-07', 'ABCD-6D-AA2E-10A-11R-A37O-07',
'ABCD-6D-AA2E-09A-11R-A37O-07'],
'year': [2012, 2012, 2013, 2014, 2014, 2017, 2015]
}
# convert to df
df = pd.DataFrame(df)
# define a function that checks if position 13&15 are > 9.
def filter(x):
# that, if x is a string,
if type(x) is str:
if int(float(x[13:15])) <= 9:
return True
else:
return False
else:
return False
# apply function
df['KeepRow'] = df['ID'].apply(filter)
print(df)
# Now filter out rows where "KeepRow" = False
df = df.loc[df['KeepRow'] == True]
print(df)
# drop the column "KeepRow" as we don't need it anymore
df = df.drop('KeepRow', axis=1)
print(df)
答案 0 :(得分:3)
我认为您可以根据字符串的第13个符号进行过滤:
将pandas导入为pd
# Enter some data. We want to filter out all rows where the number at pos 13,14 > 9
df = pd.DataFrame({
'ID': ['ABCD-3Z-A93Z-01A-11R-A37O-07',
'ABCD-6D-AA2E-11A-11R-A37O-07',
'ABCD-6D-AA2E-01A-11R-A37O-07',
'ABCD-A3-3307-01A-01R-0864-07',
'ABCD-6D-AA2E-01A-11R-A37O-07',
'ABCD-6D-AA2E-10A-11R-A37O-07',
'ABCD-6D-AA2E-09A-11R-A37O-07'],
'year': [2012, 2012, 2013, 2014, 2014, 2017, 2015]
})
# convert to df
df['KeepRow'] = df['ID'].apply(lambda x: x[13] == '0')
或简单地说:
df[df['ID'].apply(lambda x: x[13] == '0')]
答案 1 :(得分:2)
按位置使用indexing with str,然后转换为float
并按boolean indexing
过滤:
df = df[df['ID'].str[13:15].astype(float) <=9]
print(df)
ID year
0 ABCD-3Z-A93Z-01A-11R-A37O-07 2012
2 ABCD-6D-AA2E-01A-11R-A37O-07 2013
3 ABCD-A3-3307-01A-01R-0864-07 2014
4 ABCD-6D-AA2E-01A-11R-A37O-07 2014
6 ABCD-6D-AA2E-09A-11R-A37O-07 2015
详情:
print(df['ID'].str[13:15])
0 01
1 11
2 01
3 01
4 01
5 10
6 09
Name: ID, dtype: object