如何根据值扩展数据框?

时间:2017-10-15 09:29:46

标签: r dataframe

我有以下输入数据框:

df <- data.frame(x=c('a','b','c'),y=c(4,5,6),from=c(1,2,3),to=c(2,4,6))  
df
  x y  from to
1 a 4  1    2
2 b 5  2    4
3 c 6  3    6

现在,我希望将每行的时间扩展为from和to之间的值,即(&#39; a&#39; 4)跨越两行,即1,2。预期结果如下:

exp <- data.frame(x=c('a','a','b','b','b','c','c','c','c'),
                  y=c(4,4,5,5,5,6,6,6,6),
                  z=c(1,2,2,3,4,3,4,5,6))
exp
  x y z
1 a 4 1
2 a 4 2
3 b 5 2
4 b 5 3
5 b 5 4
6 c 6 3
7 c 6 4
8 c 6 5
9 c 6 6

在没有循环的情况下,最常用的方法是什么?

4 个答案:

答案 0 :(得分:5)

一种“非tidyverse”方式:

data.frame(
  x = c('a', 'b', 'c'),
  y = c(4, 5, 6),
  from = c(1, 2, 3),
  to = c(2, 4, 6),
  stringsAsFactors = FALSE
) -> xdf

do.call(rbind.data.frame, lapply(1:nrow(xdf), function(i) {
  data.frame(x = xdf$x[i], y=xdf$y[i], z=xdf$from[i]:xdf$to[i], stringsAsFactors=FALSE)
}))

一种“整齐”的方式:

library(tidyverse)

data_frame(
  x = c('a', 'b', 'c'),
  y = c(4, 5, 6),
  from = c(1, 2, 3),
  to = c(2, 4, 6)
) -> xdf

rowwise(xdf) %>% 
  do(data_frame(x = .$x, y=.$y, z=.$from:.$to))

的另一种“tidyverse”方式已在下面进行了基准测试:

xdf %>% 
  rowwise() %>% 
  do( merge( as_tibble(.), tibble(z=.$from:.$to), by=NULL) ) %>%
  select( -from, -to )     # Omit this line if you want to keep all original columns.

因为你问了abt表现:

library(microbenchmark)

data.table::data.table(
  x = c('a','b','c'),
  y = c(4,5,6),
  from = c(1,2,3),
  to = c(2,4,6)
) -> xdt1

data.frame(
  x = c('a', 'b', 'c'),
  y = c(4, 5, 6),
  from = c(1, 2, 3),
  to = c(2, 4, 6),
  stringsAsFactors = FALSE
) -> xdf1 

data.table操作通常会就地修改,因此在执行操作之前,请保持一个公平的竞争环境并制作每个数据框/表的副本。

在大多数现代系统中,时间损失约为100 纳秒

microbenchmark(

  data.table = {
    xdt2 <- xdt1
    xdt2[, diff:= (to - from) + 1]
    xdt2 <- xdt2[rep(1:.N, diff)]
    xdt2[,z := seq(from,to), by=.(x,y,from,to)]
    xdt2[,c("x", "y", "z")]
  }, 

  base = {
    xdf2 <- xdf1
    do.call(rbind.data.frame, lapply(1:nrow(xdf2), function(i) {
      data.frame(x = xdf2$x[i], y=xdf2$y[i], z=xdf2$from[i]:xdf2$to[i], stringsAsFactors=FALSE)
    }))
  }, 

  tidyverse = {
    xdf2 <- xdf1
    dplyr::rowwise(xdf2) %>% 
      dplyr::do(dplyr::data_frame(x = .$x, y=.$y, z=.$from:.$to))
  }, 

  plyr = {
    xdf2 <- xdf1
    plyr::mdply(xdf2, function(x,y,from,to) data.frame(x,y,z=seq(from,to)))[c("x","y","z")]
  },

  times = 1000

)
## Unit: microseconds
##        expr       min         lq       mean    median         uq        max neval
##  data.table   920.361  1072.9265  1257.2321  1178.832  1280.2660  10628.552  1000
##        base   677.069   761.3145   884.4136   825.472   915.8985   5366.515  1000
##   tidyverse 15926.127 17231.5015 19201.4798 17994.919 20014.4140 166901.570  1000
##        plyr  1938.838  2196.4205  2448.5314  2322.949  2501.5075   5735.255  1000

答案 1 :(得分:1)

我意识到这已经得到了解答,但是单行data.table解决方案是:

library(data.table)
setDT(df)[,.(z = from:to), by = .(x,y)]

#   x y z
#1: a 4 1
#2: a 4 2
#3: b 5 2
#4: b 5 3
#5: b 5 4
#6: c 6 3
#7: c 6 4
#8: c 6 5
#9: c 6 6

答案 2 :(得分:0)

您可以使用data.table

library(data.table)    
df <- data.table(x=c('a','b','c'),y=c(4,5,6),from=c(1,2,3),to=c(2,4,6))  
df <- df[, diff:= (to - from) + 1]

df <- df[rep(1:.N,diff)]
df <- df[,z := seq(from,to) , by=.(x,y,from,to)]
df

> df
   x y from to diff z
1: a 4    1  2    2 1
2: a 4    1  2    2 2
3: b 5    2  4    3 2
4: b 5    2  4    3 3
5: b 5    2  4    3 4
6: c 6    3  6    4 3
7: c 6    3  6    4 4
8: c 6    3  6    4 5
9: c 6    3  6    4 6

答案 3 :(得分:0)

使用plyr包可以使用mdply

进行整洁的解决方案
library(plyr)
df <- data.frame(x=c('a','b','c'),y=c(4,5,6),from=c(1,2,3),to=c(2,4,6)) 
res <- mdply(df, function(x,y,from,to) data.frame(x,y,z=seq(from,to)))[c("x","y","z")]
res
  x y z
1 a 4 1
2 a 4 2
3 b 5 2
4 b 5 3
5 b 5 4
6 c 6 3
7 c 6 4
8 c 6 5
9 c 6 6

因为它为每一行创建一个数据框,所以它不是超级高效的......或者?