我需要在一种pandas数据帧中保存所有参数组合和相应的准确度。
我希望,我很清楚,请指出,如果我犯了任何错误。
示例代码是:
from sklearn.grid_search import GridSearchCV
import sklearn
from sklearn.ensemble import RandomForestClassifier
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(iris.data, iris.target, test_size=0.3, random_state=0)
rfc = RandomForestClassifier(n_jobs=-1,max_features= 'sqrt' ,n_estimators=50, oob_score = True)
param_grid = {
'n_estimators': [200, 700],
'max_features': ['auto', 'sqrt', 'log2'],
'criterion' : ['gini', 'entropy']
}
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
CV_rfc.fit(X_train, y_train)
CV_rfc.grid_scores_
我在sklearn中使用网格搜索CV,以获得最佳参数。但是,我担心的是,有什么办法,我可以将所有不同的参数组合和相应的精度存储在一个pandas数据框中,我可以保存在CSV文件中以供日后使用。
[mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'auto', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'auto', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'sqrt', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'sqrt', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'gini', 'max_features': 'log2', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'auto', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'auto', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'sqrt', 'n_estimators': 700},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'log2', 'n_estimators': 200},
mean: 0.94286, std: 0.05344, params: {'criterion': 'entropy', 'max_features': 'log2', 'n_estimators': 700}]
所以,我有一个这些值的列表,我想要一个数据帧,以保存在csv文件中。
len(CV_rfc.grid_scores_)
12
答案 0 :(得分:1)
我通过互联网找到它,代码是python 2,但我修复了它在python 3上运行。
这就是我在那里找到的。
import pandas as pd
from sklearn.grid_search import GridSearchCV
import numpy as np
class EstimatorSelectionHelper:
def __init__(self, models, params):
if not set(models.keys()).issubset(set(params.keys())):
missing_params = list(set(models.keys()) - set(params.keys()))
raise ValueError("Some estimators are missing parameters: %s" % missing_params)
self.models = models
self.params = params
self.keys = models.keys()
self.grid_searches = {}
def fit(self, X, y, cv=3, n_jobs=1, verbose=1, scoring=None, refit=False):
for key in self.keys:
print("Running GridSearchCV for %s." % key)
model = self.models[key]
params = self.params[key]
gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs,
verbose=verbose, scoring=scoring, refit=refit)
gs.fit(X,y)
self.grid_searches[key] = gs
def score_summary(self, sort_by='mean_score'):
def row(key, scores, params):
d = {
'estimator': key,
'min_score': min(scores),
'max_score': max(scores),
'mean_score': np.mean(scores),
'std_score': np.std(scores),
}
return pd.Series({**params,**d})
rows = [row(k, gsc.cv_validation_scores, gsc.parameters)
for k in self.keys
for gsc in self.grid_searches[k].grid_scores_]
df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False)
columns = ['estimator', 'min_score', 'mean_score', 'max_score', 'std_score']
columns = columns + [c for c in df.columns if c not in columns]
return df[columns]
from sklearn import datasets
iris = datasets.load_iris()
X_iris = iris.data
y_iris = iris.target
from sklearn.ensemble import (ExtraTreesClassifier, RandomForestClassifier,
AdaBoostClassifier, GradientBoostingClassifier)
from sklearn.svm import SVC
models = {'RandomForestClassifier': RandomForestClassifier()}
params = {'RandomForestClassifier': { 'n_estimators': [16, 32],
'max_features': ['auto', 'sqrt', 'log2'],
'criterion' : ['gini', 'entropy'] }}
helper = EstimatorSelectionHelper(models, params)
helper.fit(X_iris, y_iris)
helper.score_summary()
<强> 输出: 强>
Running GridSearchCV for RandomForestClassifier.
Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=1)]: Done 36 out of 36 | elapsed: 1.7s finished
Out[31]:
estimator min_score mean_score max_score std_score criterion max_features n_estimators
1 RandomForestClassifier 0.921569 0.96732 1 0.0333269 gini auto 32
6 RandomForestClassifier 0.921569 0.96732 1 0.0333269 entropy auto 16
10 RandomForestClassifier 0.941176 0.966912 0.980392 0.0182045 entropy log2 16
2 RandomForestClassifier 0.901961 0.960784 1 0.0423578 gini sqrt 16
4 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 gini log2 16
7 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 entropy auto 32
8 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 entropy sqrt 16
9 RandomForestClassifier 0.921569 0.960376 0.980392 0.0274454 entropy sqrt 32
3 RandomForestClassifier 0.941176 0.959967 0.980392 0.0160514 gini sqrt 32
0 RandomForestClassifier 0.901961 0.95384 0.980392 0.0366875 gini auto 16
11 RandomForestClassifier 0.901961 0.95384 0.980392 0.0366875 entropy log2 32
5 RandomForestClassifier 0.921569 0.953431 0.980392 0.0242635 gini log2 32