关注的是这个示范性的熊猫数据帧:
Measurement Trigger Valid
0 2.0 False True
1 4.0 False True
2 3.0 False True
3 0.0 True False
4 100.0 False True
5 3.0 False True
6 2.0 False True
7 1.0 True True
每当Trigger
为True
时,我希望计算最后3个(从当前开始)有效测量的总和和平均值。如果列Valid
为True
,则度量被视为有效。因此,让我们使用上述数据框中的两个示例进行澄清:
Index 3
:应使用索引2,1,0
。预期Sum = 9.0, Mean = 3.0
Index 7
:应使用索引7,6,5
。预期Sum = 6.0, Mean = 2.0
我已尝试pandas.rolling
并创建新的移位列,但未成功。请参阅以下我的测试摘录(应该直接运行):
import unittest
import pandas as pd
import numpy as np
from pandas.util.testing import assert_series_equal
def create_sample_dataframe_2():
df = pd.DataFrame(
{"Measurement" : [2.0, 4.0, 3.0, 0.0, 100.0, 3.0, 2.0, 1.0 ],
"Valid" : [True, True, True, False, True, True, True, True],
"Trigger" : [False, False, False, True, False, False, False, True],
})
return df
def expected_result():
return pd.DataFrame({"Sum" : [np.nan, np.nan, np.nan, 9.0, np.nan, np.nan, np.nan, 6.0],
"Mean" :[np.nan, np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 2.0]})
class Data_Preparation_Functions(unittest.TestCase):
def test_backsummation(self):
N_SUMMANDS = 3
temp_vars = []
df = create_sample_dataframe_2()
for i in range(0,N_SUMMANDS):
temp_var = "M_{0}".format(i)
df[temp_var] = df["Measurement"].shift(i)
temp_vars.append(temp_var)
df["Sum"] = df[temp_vars].sum(axis=1)
df["Mean"] = df[temp_vars].mean(axis=1)
df.loc[(df["Trigger"]==False), "Sum"] = np.nan
df.loc[(df["Trigger"]==False), "Mean"] = np.nan
assert_series_equal(expected_result()["Sum"],df["Sum"])
assert_series_equal(expected_result()["Mean"],df["Mean"])
def test_rolling(self):
df = create_sample_dataframe_2()
df["Sum"] = df[(df["Valid"] == True)]["Measurement"].rolling(window=3).sum()
df["Mean"] = df[(df["Valid"] == True)]["Measurement"].rolling(window=3).mean()
df.loc[(df["Trigger"]==False), "Sum"] = np.nan
df.loc[(df["Trigger"]==False), "Mean"] = np.nan
assert_series_equal(expected_result()["Sum"],df["Sum"])
assert_series_equal(expected_result()["Mean"],df["Mean"])
if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(Data_Preparation_Functions)
unittest.TextTestRunner(verbosity=2).run(suite)
非常感谢任何帮助或解决方案。谢谢,干杯!
编辑:澄清:这是我期望的结果数据框:
Measurement Trigger Valid Sum Mean
0 2.0 False True NaN NaN
1 4.0 False True NaN NaN
2 3.0 False True NaN NaN
3 0.0 True False 9.0 3.0
4 100.0 False True NaN NaN
5 3.0 False True NaN NaN
6 2.0 False True NaN NaN
7 1.0 True True 6.0 2.0
EDIT2:另一个澄清:
我确实没有错误估计,而是我没有尽可能明确地表达我的意图。以下是使用相同数据框的另一种尝试:
让我们首先看一下Trigger
列:我们在索引3(绿色矩形)中找到第一个True
。所以索引3是我们开始寻找的点。索引3处没有有效的度量(列Valid
为False
;红色矩形)。所以,我们开始回到过去,直到我们累积了三行,其中Valid
是True
。对于索引2,1和0,会发生这种情况。对于这三个索引,我们计算列Measurement
(蓝色矩形)的总和和平均值:
现在我们开始这个小算法的下一次迭代:再次查看True
列中的下一个Trigger
。我们在索引7(绿色矩形)找到它。在索引7处还有一个有效的度量标准,所以我们这次包括它。对于我们的计算,我们使用索引7,6和5(绿色矩形),因此得到:
我希望,这会对这个小问题有所了解。
答案 0 :(得分:4)
继承人选择,采取3期滚动均值和总和
df['RollM'] = df.Measurement.rolling(window=3,min_periods=0).mean()
df['RollS'] = df.Measurement.rolling(window=3,min_periods=0).sum()
现在设置False触发器等于NaN
df.loc[df.Trigger == False,['RollS','RollM']] = np.nan
产量
Measurement Trigger Valid RollM RollS
0 2.0 False True NaN NaN
1 4.0 False True NaN NaN
2 3.0 False True NaN NaN
3 0.0 True False 2.333333 7.0
4 100.0 False True NaN NaN
5 3.0 False True NaN NaN
6 2.0 False True NaN NaN
7 1.0 True True 2.000000 6.0
编辑,更新以反映有效参数
df['mean'],df['sum'] = np.nan,np.nan
roller = df.Measurement.rolling(window=3,min_periods=0).agg(['mean','sum'])
df.loc[(df.Trigger == True) & (df.Valid == True),['mean','sum']] = roller
df.loc[(df.Trigger == True) & (df.Valid == False),['mean','sum']] = roller.shift(1)
产量
Measurement Trigger Valid mean sum
0 2.0 False True NaN NaN
1 4.0 False True NaN NaN
2 3.0 False True NaN NaN
3 0.0 True False 3.0 9.0
4 100.0 False True NaN NaN
5 3.0 False True NaN NaN
6 2.0 False True NaN NaN
7 1.0 True True 2.0 6.0