我有一个小方案,我读取文本文件并根据日期计算平均值,并将摘要存储到Mysql数据库中。
以下是代码
val repo_sum = joined_data.map(SensorReport.generateReport)
repo_sum.show() --- STEP 1
repo_sum.write.mode(SaveMode.Overwrite).jdbc(url, "sensor_report", prop)
repo_sum.show() --- STEP 2
在repo_sum数据帧中计算平均值之后是步骤1的结果
+----------+------------------+-----+-----+
| date| flo| hz|count|
+----------+------------------+-----+-----+
|2017-10-05|52.887049194476745|10.27| 5.0|
|2017-10-04| 55.4188048943416|10.27| 5.0|
|2017-10-03| 54.1529270444092|10.27| 10.0|
+----------+------------------+-----+-----+
然后执行save命令,第2步的数据集值为
+----------+-----------------+------------------+-----+
| date| flo| hz|count|
+----------+-----------------+------------------+-----+
|2017-10-05|52.88704919447673|31.578524597238367| 10.0|
|2017-10-04| 55.4188048943416| 32.84440244717079| 10.0|
+----------+-----------------+------------------+-----+
以下是完整的代码
class StreamRead extends Serializable {
org.apache.spark.sql.catalyst.encoders.OuterScopes.addOuterScope(this);
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Application").setMaster("local[2]")
val ssc = new StreamingContext(conf, Seconds(2))
val sqlContext = new SQLContext(ssc.sparkContext)
import sqlContext.implicits._
val sensorDStream = ssc.textFileStream("file:///C:/Users/M1026352/Desktop/Spark/StreamData").map(Sensor.parseSensor)
val url = "jdbc:mysql://localhost:3306/streamdata"
val prop = new java.util.Properties
prop.setProperty("user", "root")
prop.setProperty("password", "root")
val tweets = sensorDStream.foreachRDD {
rdd =>
if (rdd.count() != 0) {
val databaseVal = sqlContext.read.jdbc("jdbc:mysql://localhost:3306/streamdata", "sensor_report", prop)
val rdd_group = rdd.groupBy { x => x.date }
val repo_data = rdd_group.map { x =>
val sum_flo = x._2.map { x => x.flo }.reduce(_ + _)
val sum_hz = x._2.map { x => x.hz }.reduce(_ + _)
val sum_flo_count = x._2.size
print(sum_flo_count)
SensorReport(x._1, sum_flo, sum_hz, sum_flo_count)
}
val df = repo_data.toDF()
val joined_data = df.join(databaseVal, Seq("date"), "fullouter")
joined_data.show()
val repo_sum = joined_data.map(SensorReport.generateReport)
repo_sum.show()
repo_sum.write.mode(SaveMode.Overwrite).jdbc(url, "sensor_report", prop)
repo_sum.show()
}
}
ssc.start()
WorkerAndTaskExample.main(args)
ssc.awaitTermination()
}
case class Sensor(resid: String, date: String, time: String, hz: Double, disp: Double, flo: Double, sedPPM: Double, psi: Double, chlPPM: Double)
object Sensor extends Serializable {
def parseSensor(str: String): Sensor = {
val p = str.split(",")
Sensor(p(0), p(1), p(2), p(3).toDouble, p(4).toDouble, p(5).toDouble, p(6).toDouble, p(7).toDouble, p(8).toDouble)
}
}
case class SensorReport(date: String, flo: Double, hz: Double, count: Double)
object SensorReport extends Serializable {
def generateReport(row: Row): SensorReport = {
print(row)
if (row.get(4) == null) {
SensorReport(row.getString(0), row.getDouble(1) / row.getDouble(3), row.getDouble(2) / row.getDouble(3), row.getDouble(3))
} else if (row.get(2) == null) {
SensorReport(row.getString(0), row.getDouble(4), row.getDouble(5), row.getDouble(6))
} else {
val count = row.getDouble(3) + row.getDouble(6)
val flow_avg_update = (row.getDouble(6) * row.getDouble(4) + row.getDouble(1)) / count
val flow_flo_update = (row.getDouble(6) * row.getDouble(5) + row.getDouble(1)) / count
print(count + " : " + flow_avg_update + " : " + flow_flo_update)
SensorReport(row.getString(0), flow_avg_update, flow_flo_update, count)
}
}
}
据我所知,保存命令在spark中执行时整个过程再次运行,我的理解是正确的请告诉我。
答案 0 :(得分:1)
在Spark中,所有转换都是惰性的,在调用action之前不会发生任何事情。同时,这意味着如果在同一RDD或数据帧上调用多个动作,则将多次执行所有计算。这包括加载数据和所有转换。
要避免这种情况,请使用cache()
或persist()
(除了cache()
可以指定不同类型的存储空间外,同样的事情,默认情况下只有RAM内存)。 cache()
将在第一次使用操作后将RDD / dataframe保留在内存中。因此,避免多次运行相同的转换。
在这种情况下,由于对数据帧执行了两个操作导致了这种意外行为,因此缓存数据帧可以解决问题:
val repo_sum = joined_data.map(SensorReport.generateReport).cache()