我正在尝试找到使用KDTree.query_ball_point
函数查找动画每个步骤中每个粒子的'r'距离内的粒子浓度的最佳方法,并使用此计数的数值在conc
等式中。基本上我试图使沉降(斯托克斯)速度成为周围颗粒浓度的函数。
到目前为止,我的尝试没有奏效,下面是我正在使用的代码(不包括我失败的KDTree尝试)
我改变了“r”(半径),因此颗粒的大小没有变化,因此可以更清楚地观察到浓度对颗粒沉降速度的影响(目前根本不起作用)。但是,for循环中的“c”必须正在执行某些操作,因为动画正在运行(如果没有“c”则无法工作)。
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from matplotlib.animation import FuncAnimation
import random
import pdb
from scipy import spatial
from scipy.spatial import KDTree
n=5
sigma=0.01
#m = np.random.uniform(n)
pp = 2.56 # pp = particle density (Sphene=3.53) (Feldspar=2.56)
#(g/cm^3)
pf = 2.7 # pf = fluid density(g/cm^3)
g = 9.8 # g = gravity (m/s^2)
r = 0.003 # r = radius of sphere (meter)
mu = 0.53 # mu = dynamic viscosity of fluid (log10Poise)
rp = 0.0005 #radius around particle to check for nearest neighbor
fig, ax = plt.subplots()
az = plt.axes(xlim=(-1, 1), ylim=(-100, 0))
xdata, ydata = [0.0], [0.0]
ln, = plt.plot([], [], 'ro', animated=True)
#pdb.set_trace()
def v_stokes(pp,pf,g,r,mu):
top=2*(pp-pf)*g*(r**2)
bottom=9*mu
ws=top/bottom
return ws
def init():
ax.set_xlim( -2, 2)
ax.set_ylim(-10, 0)
return ln,
def concentration(xdata, ydata, rp):
pdb.set_trace()
coords = list(zip(xdata, ydata))
tree = spatial.KDTree(coords)
test = np.column_stack([xdata, ydata])
nnl = tree.query_ball_point(test, rp) #nearest neighbors as a list
#(had tree in here before test but shape was wrong)
nnt = np.zeros(len(nnl)) #nearest neighbors total
for i in range(len(nnt)):
nnt[i] = len(nnl[i])
return nnt,
def update(frame):
global xdata
global ydata
global rp
global concentration
xdata = xdata + np.random.normal(0, sigma, n)
#ydata = ydata + np.random.normal(-0.1, sigma, n)
wss = v_stokes(pp,pf,g,r,mu)
if frame == 0.0:
ydata = np.zeros(len(xdata)) #makes the ydata length = xdata at
#time 0
cp = concentration(xdata, ydata, rp)
ydata = ydata + (wss*(1-cp))
ln.set_data(xdata, ydata)
return ln,
ani = FuncAnimation(fig, update, frames=np.linspace(0, 2*np.pi, 128),
init_func=init, blit=True, interval=50)
plt.show()