Urlencode词典列表

时间:2017-10-12 12:30:50

标签: python pandas dataframe urllib

我有数据框,我已将其转换为字典列表:

df = data.to_dict(orient = "records")

输出:

[{'MAIN KITCHEN': 9.6, 'Time': ' 05/01/2017 00:05:00'}, 
 {'MAIN KITCHEN': 9.6, 'Time': ' 05/01/2017 00:10:00'}, 
 {'MAIN KITCHEN': 9.6, 'Time': ' 05/01/2017 00:15:00'},
 {'MAIN KITCHEN': 11.2, 'Time': ' 05/01/2017 00:20:00'}, 
 {'MAIN KITCHEN': 11.2, 'Time': ' 05/01/2017 00:25:00'}, 
 {'MAIN KITCHEN': 12.8, 'Time': ' 05/01/2017 00:30:00'},
 {'MAIN KITCHEN': 9.6, 'Time': ' 05/01/2017 00:35:00'}, 
 {'MAIN KITCHEN': 11.2, 'Time': ' 05/01/2017 00:40:00'},
 {'MAIN KITCHEN': 12.8, 'Time': ' 05/01/2017 00:45:00'}]

P.S:我只想要这样的数据。

我想将此输出编码为url或作为查询字符串。

我试过这个:

param = urllib.urlencode(df)

但是我收到了一个错误:

TypeError: not a valid non-string sequence or mapping object

有人可以告诉我这样做的正确方法吗?

1 个答案:

答案 0 :(得分:0)

您需要遍历词典列表,并在每个词典上应用urllib.urlencode

In [46]: [urllib.urlencode(d) for d in df.to_dict(orient='records')]
Out[46]: 
['Time=+05%2F01%2F2017+00%3A05%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A10%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A15%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A20%3A00&MAIN+KITCHEN=11.2',
 'Time=+05%2F01%2F2017+00%3A25%3A00&MAIN+KITCHEN=11.2',
 'Time=+05%2F01%2F2017+00%3A30%3A00&MAIN+KITCHEN=12.8',
 'Time=+05%2F01%2F2017+00%3A35%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A40%3A00&MAIN+KITCHEN=11.2',
 'Time=+05%2F01%2F2017+00%3A45%3A00&MAIN+KITCHEN=12.8']

您也可以在转换为字典之前执行此操作:

In [54]: df.apply(lambda x: urllib.urlencode(dict(x)), axis=1) 
Out[54]: 
0    Time=+05%2F01%2F2017+00%3A05%3A00&MAIN+KITCHEN...
1    Time=+05%2F01%2F2017+00%3A10%3A00&MAIN+KITCHEN...
2    Time=+05%2F01%2F2017+00%3A15%3A00&MAIN+KITCHEN...
3    Time=+05%2F01%2F2017+00%3A20%3A00&MAIN+KITCHEN...
4    Time=+05%2F01%2F2017+00%3A25%3A00&MAIN+KITCHEN...
5    Time=+05%2F01%2F2017+00%3A30%3A00&MAIN+KITCHEN...
6    Time=+05%2F01%2F2017+00%3A35%3A00&MAIN+KITCHEN...
7    Time=+05%2F01%2F2017+00%3A40%3A00&MAIN+KITCHEN...
8    Time=+05%2F01%2F2017+00%3A45%3A00&MAIN+KITCHEN...
dtype: object

In [55]: df.apply(lambda x: urllib.urlencode(dict(x)), axis=1).tolist()  
Out[55]: 
['Time=+05%2F01%2F2017+00%3A05%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A10%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A15%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A20%3A00&MAIN+KITCHEN=11.2',
 'Time=+05%2F01%2F2017+00%3A25%3A00&MAIN+KITCHEN=11.2',
 'Time=+05%2F01%2F2017+00%3A30%3A00&MAIN+KITCHEN=12.8',
 'Time=+05%2F01%2F2017+00%3A35%3A00&MAIN+KITCHEN=9.6',
 'Time=+05%2F01%2F2017+00%3A40%3A00&MAIN+KITCHEN=11.2',
 'Time=+05%2F01%2F2017+00%3A45%3A00&MAIN+KITCHEN=12.8']