我有一个3D numpy数组input_data(q x m x n),我用它来构建最终绘图的直方图数据,它存储在plot_data(m x n x 2)中。这个步骤在我的过程中是一个不错的瓶颈,我想知道是否有更快,更多" numpy"这样做的方式。
num_bins = 3
for i in range(m):
for j in range(n):
data = input_data[:, i, j]
hist, bins = np.histogram(data, bins=num_bins)
# Create the (x, y) pairs to plot
plot_data[i][j] = np.stack((bins[:-1], hist), axis=1)
答案 0 :(得分:1)
这是一个通用数量的箱子的矢量化方法 -
def vectorized_app(input_data, num_bins):
s0 = input_data.min(0)
s1 = input_data.max(0)
m,n,r = input_data.shape
ids = (num_bins*((input_data - s0)/(s1-s0))).astype(int).clip(max=num_bins-1)
offset = num_bins*(r*np.arange(n)[:,None] + np.arange(r))
ids3D = ids + offset
count3D = np.bincount(ids3D.ravel(), minlength=n*r*num_bins).reshape(n,r,-1)
bins3D = create_ranges_nd(s0, s1, num_bins+1)[...,:-1]
out = np.empty((n,r,num_bins,2))
out[...,0] = bins3D
out[...,1] = count3D
return out
辅助功能 -
# https://stackoverflow.com/a/46694364/ @Divakar
def create_ranges_nd(start, stop, N, endpoint=True):
if endpoint==1:
divisor = N-1
else:
divisor = N
steps = (1.0/divisor) * (stop - start)
return start[...,None] + steps[...,None]*np.arange(N)
运行时测试
原创方法 -
def org_app(input_data, num_bins):
q,m,n = input_data.shape
plot_data = np.zeros((m,n,num_bins,2))
for i in range(m):
for j in range(n):
data = input_data[:, i, j]
hist, bins = np.histogram(data, bins=num_bins)
plot_data[i][j] = np.stack((bins[:-1], hist), axis=1)
return plot_data
计时和验证 -
让我们测试一个形状为(100, 100, 100)
且数量为10
的大型数据数组:
In [967]: # Setup input
...: num_bins = 10
...: m = 100
...: n = 100
...: q = 100
...: input_data = np.random.rand(q,m,n)
...:
...: out1 = org_app(input_data, num_bins)
...: out2 = vectorized_app(input_data, num_bins)
...: print np.allclose(out1, out2)
...:
True
In [968]: %timeit org_app(input_data, num_bins)
1 loop, best of 3: 748 ms per loop
In [969]: %timeit vectorized_app(input_data, num_bins)
100 loops, best of 3: 12.7 ms per loop
In [970]: 748/12.7 # speedup with vectorized one over original
Out[970]: 58.89763779527559
答案 1 :(得分:0)
我认为你的样本很相似,所以直方图是相似的。在这种情况下,您可以简化比较并以更加矢量化的方式执行:
a=np.random.rand(100000,10,10)
def f(): # roughly your approach.
plotdata=np.zeros((10,10,3),np.int32)
for i in range(10):
for j in range(10):
bins,hist=np.histogram(a[:,i,j],3)
plotdata[i,j]=bins
return plotdata
def g(): #vectored comparisons
u=(a < 1/3).sum(axis=0)
w=(a > 2/3).sum(axis=0)
v=len(a)-u-w
return np.dstack((u,v,w))
改善8倍:
In [213]: %timeit f()
548 ms ± 15.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [214]: %timeit g()
77.7 ms ± 5.46 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)