我正在尝试使用LMFIT库进行多洛伦兹拟合, 但它不起作用,我甚至理解我的语法 制作完全错了,但我没有任何新想法。
我的问题是:我有一组非常长的光谱,有多组 峰值,但峰值的数量在这些集合中不是恒定的,所以 有时候我只有1个高峰,但有时我可能有8个 甚至20。
#function definition:
def Lorentzian(x, amp, cen, wid, n):
f = 0
for i in range( int(n) ):
"lorentzian function: wid = half-width at half-max"
f += (amp[i]/(1 + ((x-cen[i])/wid[i])**2))
return f
#library import and model definition:
import lmfit as lf
lmodel = lf.Model(Lorentzian)
#The initial parameters for the model:
peaks_in_interval = np.array([2378, 2493, 2525, 2630, 2769])
number_of_peaks = len(peaks_in_interval)
amplitude = width = np.zeros( number_of_peaks ) + 1
center = x[peaks_in_interval]
params = lmodel.make_params(x = x, amp = amplitude, cen = center, wid = width, n = number_of_peaks)
#This is the line that doesn't work:
result = lmodel.fit( y, params, x = x )
我已经开始尝试创建一个返回a的泛型函数 多Lorentzian,但我正在努力如何使这项工作......
我也在发送x,y数组的数据。
答案 0 :(得分:2)
您应该能够使用内置模型并使用manual中所述的前缀。此外,最近有一个关于mailinglist上非常相似主题的讨论。
您可以执行以下操作。它还不能很好地适应最后一个峰值,但是你可以用起始值等等来调整它。此外,由于您的基线不是完全平坦,因此当您使用LinearModel
代替ConstantModel
时可能会有所改善,但我还没有尝试过。
from lmfit.models import LorentzianModel, ConstantModel
import numpy as np
import matplotlib.pyplot as plt
x, y = np.loadtxt('Peaks.txt', unpack=True)
peaks_in_interval = np.array([43, 159, 191, 296, 435, 544])
number_of_peaks = len(peaks_in_interval)
amplitude = y[peaks_in_interval] / 5
width = np.zeros(number_of_peaks) + 0.1
center = x[peaks_in_interval]
def make_model(num):
pref = "f{0}_".format(num)
model = LorentzianModel(prefix = pref)
model.set_param_hint(pref+'amplitude', value=amplitude[num], min=0, max=5*amplitude[num])
model.set_param_hint(pref+'center', value=center[num], min=center[num]-0.5, max=center[num]+0.5)
model.set_param_hint(pref+'sigma', value=width[num], min=0, max=2)
return model
mod = None
for i in range(len(peaks_in_interval)):
this_mod = make_model(i)
if mod is None:
mod = this_mod
else:
mod = mod + this_mod
offset = ConstantModel()
offset.set_param_hint('c', value=np.average(y[-75:]))
mod = mod + offset
out=mod.fit(y, x=x, method='nelder')
plt.interactive(True)
print(out.fit_report())
plt.plot(x, y)
plt.plot(x, out.best_fit, label='best fit')
plt.plot(x, out.init_fit, 'r--', label='fit with initial values')
plt.show()