tf.contrib.data.DataSet批量大小只能设置为1

时间:2017-10-11 07:58:51

标签: tensorflow tensorflow-datasets

我通过代码create_pascal_tf_record.py将pascal voc数据集转换为tfrecords。我使用tf.contrib.data.Dataset来读取数据。我使用的代码如下:

import tensorflow as tf
from tensorflow.contrib.data import Iterator

slim_example_decoder = tf.contrib.slim.tfexample_decoder

flags = tf.app.flags
flags.DEFINE_string('data_dir', '/home/aurora/workspaces/data/tfrecords_data/voc_dataset/trainval.tfrecords',
                'tfrecords file output path')
flags.DEFINE_integer('batch_size', 1, 'training batch size')
flags.DEFINE_integer('capacity', 10000, 'training batch size')
FLAGS = flags.FLAGS

features = {"image/height": tf.FixedLenFeature((), tf.int64, default_value=1),
        "image/width": tf.FixedLenFeature((), tf.int64, default_value=1),
        "image/filename": tf.FixedLenFeature((), tf.string, default_value=""),
        "image/source_id": tf.FixedLenFeature((), tf.string, default_value=""),
        "image/key/sha256": tf.FixedLenFeature((), tf.string, default_value=""),
        "image/encoded": tf.FixedLenFeature((), tf.string, default_value=""),
        "image/format": tf.FixedLenFeature((), tf.string, default_value="jpeg"),
        "image/object/object_number": tf.FixedLenFeature((), tf.int64, default_value=1),
        "image/object/bbox/xmin": tf.VarLenFeature(tf.float32),
        "image/object/bbox/xmax": tf.VarLenFeature(tf.float32),
        "image/object/bbox/ymin": tf.VarLenFeature(tf.float32),
        "image/object/bbox/ymax": tf.VarLenFeature(tf.float32),
        "image/object/class/text": tf.VarLenFeature(tf.string),
        "image/object/class/label": tf.VarLenFeature(tf.int64),
        "image/object/difficult": tf.VarLenFeature(tf.int64),
        "image/object/truncated": tf.VarLenFeature(tf.int64),
        "image/object/view": tf.VarLenFeature(tf.string),
      }

items_to_handlers = {
    'image': slim_example_decoder.Image(
        image_key='image/encoded', format_key='image/format', channels=3),
    'height': (
        slim_example_decoder.Tensor('image/height')),
    'width': (
        slim_example_decoder.Tensor('image/width')),
    'source_id': (
        slim_example_decoder.Tensor('image/source_id')),
    'key': (
        slim_example_decoder.Tensor('image/key/sha256')),
    'filename': (
        slim_example_decoder.Tensor('image/filename')),
    # Object boxes and classes.
    'groundtruth_boxes': (
        slim_example_decoder.BoundingBox(
            ['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/')),
    'groundtruth_classes': (
        slim_example_decoder.Tensor('image/object/class/label')),
    'groundtruth_difficult': (
        slim_example_decoder.Tensor('image/object/difficult')),
    'image/object/truncated': (
        slim_example_decoder.Tensor('image/object/truncated')),
    }

decoder = slim_example_decoder.TFExampleDecoder(features, items_to_handlers)
keys = decoder.list_items()


def _parse_function_train(example):
    serialized_example = tf.reshape(example, shape=[])
    decoder = slim_example_decoder.TFExampleDecoder(features, items_to_handlers)
    keys = decoder.list_items()
    tensors = decoder.decode(serialized_example, items=keys)
    tensor_dict = dict(zip(keys, tensors))
    tensor_dict['image'].set_shape([None, None, 3])
    # tensor_dict['image'] = tf.expand_dims(tensor_dict['image'], 0)
    images = tensor_dict['image']
    float_images = tf.cast(images, tf.uint8)
    tensor_dict['image'] = float_images
    return tensor_dict


def build_pipleline(train_data_dir, test_data_dir, batch_size, capacity):
    train_dataset = tf.contrib.data.TFRecordDataset(train_data_dir)
    train_dataset = train_dataset.map(_parse_function_train)
    train_dataset = train_dataset.repeat(1)
    train_dataset = train_dataset.batch(batch_size)
    train_dataset = train_dataset.shuffle(buffer_size=capacity)

    iterator = Iterator.from_structure(train_dataset.output_types,
                                   train_dataset.output_shapes)
    next_element = iterator.get_next()
    training_init_op = iterator.make_initializer(train_dataset)

    return training_init_op, next_element 


if __name__ == '__main__':
    # TODO: only support batch size 1
    training_init_op, next_element = build_pipleline(FLAGS.data_dir, None, FLAGS.batch_size, FLAGS.capacity)
    sess = tf.Session()
    sess.run(training_init_op)
    counter = 0
    while True:
        try:
            next_element_val = sess.run(next_element)
            print(next_element_val['image'].shape, next_element_val['filename'])
            print(next_element_val['groundtruth_boxes'])
            print('-'*30)
            counter += 1
        except tf.errors.OutOfRangeError:
            print('End of training data in step %d' %counter)
            break

当批量大小设置为1时,代码可以正常运行,当我将批量大小更改为大于1时,代码将出错。 错误如flollows:

/usr/software/anaconda3/bin/python3.6 /home/aurora/workspaces/PycharmProjects/object_detection_models/builder/voc_input_pipline_dataset_builder.py
2017-10-11 15:55:05.886856: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-11 15:55:05.886869: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-11 15:55:05.886872: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-10-11 15:55:05.886874: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-10-11 15:55:05.886876: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-10-11 15:55:05.974850: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-10-11 15:55:05.975103: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties: 
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.683
pciBusID 0000:01:00.0
Total memory: 10.90GiB
Free memory: 10.46GiB
2017-10-11 15:55:05.975112: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 
2017-10-11 15:55:05.975114: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0:   Y 
2017-10-11 15:55:05.975118: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0,       name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
2017-10-11 15:55:06.027798: W tensorflow/core/framework/op_kernel.cc:1192] Internal: HandleElementToSlice Cannot copy slice: number of elements does not match.  Shapes are: [element]: [1,4], [parent slice]: [5,4]
Traceback (most recent call last):
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1327, in _do_call
return fn(*args)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1306, in _run_fn
status, run_metadata)
  File "/usr/software/anaconda3/lib/python3.6/contextlib.py", line 89, in __exit__
next(self.gen)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
 tensorflow.python.framework.errors_impl.InternalError: HandleElementToSlice Cannot copy slice: number of elements does not match.  Shapes are: [element]: [1,4], [parent slice]: [5,4]
 [[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?], [?,?,4], [?,?], [?,?], [?], [?,?,?,3], [?,?], [?], [?], [?]], output_types=[DT_STRING, DT_FLOAT, DT_INT64, DT_INT64, DT_INT64, DT_UINT8, DT_INT64, DT_STRING, DT_STRING, DT_INT64], _device="/job:localhost/replica:0/task:0/cpu:0"](Iterator)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/aurora/workspaces/PycharmProjects/object_detection_models/builder/voc_input_pipline_dataset_builder.py", line 98, in <module>
next_element_val = sess.run(next_element)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 895, in run
run_metadata_ptr)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1124, in _run
feed_dict_tensor, options, run_metadata)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1321, in _do_run
options, run_metadata)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1340, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: HandleElementToSlice Cannot copy slice: number of elements does not match.  Shapes are: [element]: [1,4], [parent slice]: [5,4]
 [[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?], [?,?,4], [?,?], [?,?], [?], [?,?,?,3], [?,?], [?], [?], [?]], output_types=[DT_STRING, DT_FLOAT, DT_INT64, DT_INT64, DT_INT64, DT_UINT8, DT_INT64, DT_STRING, DT_STRING, DT_INT64], _device="/job:localhost/replica:0/task:0/cpu:0"](Iterator)]]

Caused by op 'IteratorGetNext', defined at:
  File "/home/aurora/workspaces/PycharmProjects/object_detection_models/builder/voc_input_pipline_dataset_builder.py", line 92, in <module>
training_init_op, next_element = build_pipleline(FLAGS.data_dir, None, FLAGS.batch_size, FLAGS.capacity)
  File "/home/aurora/workspaces/PycharmProjects/object_detection_models/builder/voc_input_pipline_dataset_builder.py", line 84, in build_pipleline
next_element = iterator.get_next()
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/data/python/ops/dataset_ops.py", line 304, in get_next
name=name))
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_dataset_ops.py", line 379, in iterator_get_next
output_shapes=output_shapes, name=name)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
op_def=op_def)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2630, in create_op
original_op=self._default_original_op, op_def=op_def)
  File "/usr/software/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1204, in __init__
self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

InternalError (see above for traceback): HandleElementToSlice Cannot copy slice: number of elements does not match.  Shapes are: [element]: [1,4], [parent slice]: [5,4]
 [[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?], [?,?,4], [?,?], [?,?], [?], [?,?,?,3], [?,?], [?], [?], [?]], output_types=[DT_STRING, DT_FLOAT, DT_INT64, DT_INT64, DT_INT64, DT_UINT8, DT_INT64, DT_STRING, DT_STRING, DT_INT64], _device="/job:localhost/replica:0/task:0/cpu:0"](Iterator)]]

如何将批量大小更改为大于1? 感谢

3 个答案:

答案 0 :(得分:4)

功能Dataset.batch()仅适用于尺寸相同的张量。如果输入数据的大小不同,则应使用Dataset.padded_batch()功能,这样您就可以通过指定填充它们的一个或多个维度来批量处理不同形状的张量。

来自tensorflow文档:

  

padded_batch(       batch_size时,       padded_shapes,       padding_values =无)   将此数据集的连续元素组合到填充批次中。

     

与Dataset.dense_to_sparse_batch()类似,此方法结合了多个   此数据集的连续元素可能有所不同   形状,成为一个单一的元素。结果元素中的张量   有一个额外的外部尺寸,并填充到相应的   padded_shapes中的形状。

     

参数数量:

     

batch_size:一个tf.int64标量tf.Tensor,表示数量   此数据集的连续元素将合并为一个批次。

     

padded_shapes:tf.TensorShape或tf.int64向量的嵌套结构   类似张量的物体代表各自的形状   每个输入元素的组件应在批处理之前填充。   任何未知的尺寸(例如tf.TensorShape中的tf.Dimension(None))   -1在类似张量的对象中)将被填充到每个批次中该维度的最大大小。

     

padding_values :(可选。)嵌套   标量形状tf.Tensor的结构,表示填充值   用于各个组件。对于数字类型,默认值为0   和字符串类型的空字符串。

     

返回:   数据集。

您还可以在官方Tensorflow Programmer's guide上找到功能使用示例(如下所示)。

dataset = tf.data.Dataset.range(100)
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x))
dataset = dataset.padded_batch(4, padded_shapes=[None])

iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

print(sess.run(next_element))  # ==> [[0, 0, 0], [1, 0, 0], [2, 2, 0], [3, 3, 3]]
print(sess.run(next_element))  # ==> [[4, 4, 4, 4, 0, 0, 0],
                               #      [5, 5, 5, 5, 5, 0, 0],
                               #      [6, 6, 6, 6, 6, 6, 0],
                               #      [7, 7, 7, 7, 7, 7, 7]]

答案 1 :(得分:0)

该错误消息表明Dataset.batch()转换正在尝试从不同大小的张量构建密集批处理。使用Dataset.batch()时,所有张量都必须相同。

要使图像大小相同,请考虑在_parse_function_train()内使用tf.image.resize_image_with_crop_or_pad()之类的图像。

答案 2 :(得分:0)

仔细检查您的数据。您的数据中必须有一些NotFixLen列。 例如,如果你的“col-1”有值[“a | b”,“a | b | c”],那么HanleError就会抛出。 tf没有处理NotFixLen col,特别是使用数据集。然而,一些消息称tf-1.5在处理VarLen柱方面会更好。