如何在matplotlib中制作散点图对数比例(带有原始比例的标签)

时间:2017-10-11 04:32:57

标签: python pandas matplotlib plot data-visualization

如何在matplotlib中制作这样的情节,为了简单起见,我正在尝试(np.log10(df['amount'].dropna().values))但x标签是对数刻度(不是原始刻度),我想要像David Robinson的情节,这里&# 39;是我的

label   price    growth
A       90       10%
B       32       32%
C       3        22%
D       0.3      16%
E       1        10%

我想要的是这样的东西

enter image description here

1 个答案:

答案 0 :(得分:2)

您可以使用seaborn来执行此操作:

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

数据:

label   price   growth
0   A   90.0    0.10
1   B   32.0    0.32
2   C   3.0     0.22
3   D   0.3     0.16
4   E   1.0     0.10

简介:

ax = sns.lmplot('price', # Horizontal axis
           'growth', # Vertical axis
           data=data, # Data source
           fit_reg=False, # Don't fix a regression line
           size = 5,
           aspect =1 ) # size and dimension

plt.title('Example Plot')
# Set x-axis label
plt.xlabel('price')
plt.xscale('log')
# Set y-axis label
plt.ylabel('growth')


def label_point(x, y, val, ax):
    a = pd.concat({'x': x, 'y': y, 'val': val}, axis=1)
    for i, point in a.iterrows():
        ax.text(point['x']+.02, point['y'], str(point['val']))

label_point(data.price, data.growth, data.label, plt.gca()) 

enter image description here