我需要计算一段时间内进行的金融投资的XIRR。在numpy,pandas或plain python中是否有任何函数可以执行此操作?
原始问题中接受的答案不正确,可以改进。
答案 0 :(得分:1)
为快速 XIRR 计算创建了一个包,PyXIRR
它没有外部依赖项,并且比任何现有实现都运行得更快。
from datetime import date
from pyxirr import xirr
dates = [date(2020, 1, 1), date(2021, 1, 1), date(2022, 1, 1)]
amounts = [-1000, 1000, 1000]
# feed columnar data
xirr(dates, amounts)
# feed tuples
xirr(zip(dates, amounts))
# feed DataFrame
import pandas as pd
xirr(pd.DataFrame({"dates": dates, "amounts": amounts}))
答案 1 :(得分:0)
以下是here的实施。
import datetime
from scipy import optimize
def xnpv(rate,cashflows):
return sum([cf/(1+rate)**((t-t0).days/365.0) for (t,cf) in chron_order])
def xirr(cashflows,guess=0.1):
return optimize.newton(lambda r: xnpv(r,cashflows),guess)
答案 2 :(得分:0)
此实现计算一次时间增量,然后矢量化 NPV 计算。对于更大的数据集,它应该比 @pyCthon 的解决方案运行得快得多。输入是带有指数日期的熊猫系列现金流量。
import pandas as pd
import numpy as np
from scipy import optimize
def xirr2(valuesPerDate):
""" Calculate the irregular rate of return.
valuesPerDate is a pandas series of cashflows with index of dates.
"""
# Clean values
valuesPerDateCleaned = valuesPerDate[valuesPerDate != 0]
# Check for sign change
if valuesPerDateCleaned.min() * valuesPerDateCleaned.max() >= 0:
return np.nan
# Set index to time delta in years
valuesPerDateCleaned.index = (valuesPerDateCleaned.index - valuesPerDateCleaned.index.min()).days / 365.0
result = np.nan
try:
result = optimize.newton(lambda r: (valuesPerDateCleaned / ((1 + r) ** valuesPerDateCleaned.index)).sum(), x0=0, rtol=1e-4)
except (RuntimeError, OverflowError):
result = optimize.brentq(lambda r: (valuesPerDateCleaned / ((1 + r) ** valuesPerDateCleaned.index)).sum(), a=-0.999999999999999, b=100, maxiter=10**4)
if not isinstance(result, complex):
return result
else:
return np.nan
valuesPerDate = pd.Series()
for d in pd.date_range(start='1990-01-01', end='2019-12-31', freq='M'):
valuesPerDate[d] = 10*np.random.uniform(-0.5,1)
valuesPerDate[0] = -100
print(xirr2(valuesPerDate))