我一直在研究神经网络一段时间,并用python和numpy实现了一个实现。我用XOR做了一个非常简单的例子,效果很好。所以我想我会更进一步尝试MNIST数据库。
有我的问题。我使用的NN有784个输入,30个隐藏和10个输出神经元。 隐藏层的激活功能只吐出一个,因此网络基本上停止学习。我正在做的数学运算是正确的,并且相同的实现与XOR示例一起运行良好,我正在正确地读取MNIST集。所以我不知道问题的来源。
import pickle
import gzip
import numpy as np
def load_data():
f = gzip.open('mnist.pkl.gz', 'rb')
training_data, validation_data, test_data = pickle.load(f, encoding="latin1")
f.close()
return (training_data, validation_data, test_data)
def transform_output(num):
arr = np.zeros(10)
arr[num] = 1.0
return arr
def out2(arr):
return arr.argmax()
data = load_data()
training_data = data[0]
training_input = np.array(training_data[0])
training_output = [transform_output(y) for y in training_data[1]]
batch_size = 10
batch_count = int(np.ceil(len(training_input) / batch_size))
input_batches = np.array_split(training_input, batch_count)
output_batches = np.array_split(training_output, batch_count)
#Sigmoid Function
def sigmoid (x):
return 1.0/(1.0 + np.exp(-x))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
return x * (1.0 - x)
#Variable initialization
epoch=1 #Setting training iterations
lr=2.0 #Setting learning rate
inputlayer_neurons = len(training_input[0]) #number of features in data set
hiddenlayer_neurons = 30 #number of hidden layers neurons
output_neurons = len(training_output[0]) #number of neurons at output layer
#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))
for i in range(epoch):
for batch in range(batch_count):
X = input_batches[batch]
y = output_batches[batch]
zh1 = np.dot(X, wh)
zh = zh1 + bh
# data -> hidden neurons -> activations
ah = sigmoid(zh)
zo1 = np.dot(ah, wout)
zo = zo1 + bout
output = sigmoid(zo)
# data -> output neurons -> error
E = y - output
print("debugging")
print("X")
print(X)
print("WH")
print(wh)
print("zh1")
print(zh1)
print("bh")
print(bh)
print("zh")
print(zh)
print("ah")
print(ah)
print("wout")
print(wout)
print("zo1")
print(zo1)
print("bout")
print(bout)
print("zo")
print(zo)
print("out")
print(output)
print("y")
print(y)
print("error")
print(E)
# data -> output neurons -> slope
slope_out = derivatives_sigmoid(output)
# data -> output neurons -> change of error
d_out = E * slope_out
# data -> hidden neurons -> error = data -> output neurons -> change of error DOT output neurons -> output inputs (equal to hidden neurons) -> weights
error_hidden = d_out.dot(wout.T)
# data -> hidden neurons -> slope
slope_h = derivatives_sigmoid(ah)
# data -> hidden neurons -> change of error
d_hidden = error_hidden * slope_h
# hidden neurons -> output neurons -> weights = "" + hidden neurons -> data -> activations DOT data -> output neurons -> change of error
wout = wout + ah.T.dot(d_out) * lr
bout = bout + np.sum(d_out, axis=0, keepdims=True) * lr
wh = wh + X.T.dot(d_hidden) * lr
bh = bh + np.sum(d_hidden, axis=0, keepdims=True) * lr
# testing results
X = np.array(data[1][0][0:10])
zh1 = np.dot(X, wh)
zh = zh1 + bh
# data -> hidden neurons -> activations
ah = sigmoid(zh)
zo1 = np.dot(ah, wout)
zo = zo1 + bout
output = sigmoid(zo)
print([out2(y) for y in output])
print(data[1][1][0:10])
总体而言,神经网络的输出对于每个输入都是相同的,并且使用不同的批量大小训练它,学习率和100个时期没有帮助。
答案 0 :(得分:2)
XOR和MNIST问题之间的区别在于类的数量:XOR是二进制分类,在MNIST中有10个类。
您计算的错误E
适用于XOR,因为sigmoid函数可用于二进制情况。如果有两个以上的类,则必须使用softmax function,这是sigmoid的扩展版本,cross entropy loss。看看this question,看看差异。您已将y
正确翻译为单热编码,但output
不包含预测的概率分布,实际上包含10个值的向量,每个值非常接近1.0
。这就是网络不学习的原因。