答案 0 :(得分:8)
您可以将图像从笛卡尔坐标系转换为极坐标系,为OCR程序准备圆路径文本图像。此功能logPolar()
可以提供帮助。
以下是准备圆形路径文本图像的一些步骤:
HoughCircles()
找到圈子的中心。logPolar()
,然后根据需要进行旋转。歪曲的形象:
logPolar()
和rotate()
此处显示了我的Python3-OpenCV3.3
代码,也许有帮助。
#!/usr/bin/python3
# 2017.10.10 12:44:37 CST
# 2017.10.10 14:08:57 CST
import cv2
import numpy as np
##(1) Read and resize the original image(too big)
img = cv2.imread("circle.png")
img = cv2.resize(img, (W//4, H//4))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
## (2) Detect circles
circles = cv2.HoughCircles(gray, method=cv2.HOUGH_GRADIENT, dp=1, minDist=3, circles=None, param1=200, param2=100, minRadius = 200, maxRadius=0 )
## make canvas
canvas = img.copy()
## (3) Get the mean of centers and do offset
circles = np.int0(np.array(circles))
x,y,r = 0,0,0
for ptx,pty, radius in circles[0]:
cv2.circle(canvas, (ptx,pty), radius, (0,255,0), 1, 16)
x += ptx
y += pty
r += radius
cnt = len(circles[0])
x = x//cnt
y = y//cnt
r = r//cnt
x+=5
y-=7
## (4) Draw the labels in red
for r in range(100, r, 20):
cv2.circle(canvas, (x,y), r, (0, 0, 255), 3, cv2.LINE_AA)
cv2.circle(canvas, (x,y), 3, (0,0,255), -1)
## (5) Crop the image
dr = r + 20
croped = img[y-dr:y+dr+1, x-dr:x+dr+1].copy()
## (6) logPolar and rotate
polar = cv2.logPolar(croped, (dr,dr),80, cv2.WARP_FILL_OUTLIERS )
rotated = cv2.rotate(polar, cv2.ROTATE_90_COUNTERCLOCKWISE)
## (7) Display the result
cv2.imshow("Canvas", canvas)
cv2.imshow("croped", croped)
cv2.imshow("polar", polar)
cv2.imshow("rotated", rotated)
cv2.waitKey();cv2.destroyAllWindows()