java.lang.ArrayIndexOutOfBoundsException:mapreduce中的2个错误,Hadoop

时间:2017-10-09 16:10:51

标签: java apache csv hadoop bigdata

我试图用hadoop来解决这个问题。

使用平均评分查找排名前十的商家。评分最高的企业将是第一位的。回想一下,review.csv文件中的第4列表示评级。

我的java代码是:

package bd;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Map.Entry;
import java.util.TreeMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;


    public class TopTenRatedBusiness {

        /*
         * Mapper Class : BusinessRatingMapper
         * Class BusinessRatingMapper parses review.csv file and emits business id and respective rating
         */
        public static class BusinessRatingMapper extends Mapper<LongWritable, Text, Text, FloatWritable> {
            /*
             * Map function that emits a business ID as a key and rating as a value
             */
            @Override
            protected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {

                String reviews[] = value.toString().split("::");
                /*
                 * reviews[2] gives business id and reviews[3] gives business rating
                 */
                context.write(new Text(reviews[2]), new FloatWritable(Float.parseFloat(reviews[3])));

            }
        } 

        /*
         * Reducer class: TopRatedBusinessReducer
         * Class TopRatedBusinessReducer emits top 10 business id with their average rating
         */
        static TreeMap<Float, List<Text>> reviewID = new TreeMap<Float, List<Text>>(Collections.reverseOrder());

        public static class BusinessRatingReducer extends Reducer<Text, FloatWritable, Text, FloatWritable> {

            /*
             * Reduce function
             */
            public void reduce(Text key, Iterable<FloatWritable> values, Context context)throws IOException, InterruptedException {
                float sumOfRatings =  0;
                int countOfRatings = 0;
                for (FloatWritable value : values) {
                    sumOfRatings += value.get();
                    countOfRatings++; 
                }

                Float averageRating = sumOfRatings / countOfRatings;

                if (reviewID.containsKey(averageRating)) {
                    reviewID.get(averageRating).add(new Text(key.toString()));
                } else {
                    List<Text> businessIDList = new ArrayList<Text>();
                    businessIDList.add(new Text(key.toString()));

                    /*
                     * Putting average rating and corresponding business ID
                     */
                    reviewID.put(averageRating, businessIDList);
                }
            }


            @Override
            protected void cleanup(Reducer<Text, FloatWritable, Text, FloatWritable>.Context context)throws IOException, InterruptedException {

                int count=0;
                for(Entry<Float, List<Text>> entry : reviewID.entrySet()) {
                    if(count > 10){
                        break;
                    }

                 FloatWritable result=new FloatWritable();
                 result.set(entry.getKey());

                 for (int i = 0; i <entry.getValue().size(); i++) {
                      if (count >= 10) {
                            break;
                      }
                       context.write(new Text(entry.getValue().get(i).toString()), result);
                       count++;
                  }

                }  

            }
        }

            /*
             * Driver Program
             */

            public static void main(String[] args) throws IOException,ClassNotFoundException, InterruptedException, NoSuchMethodException {

                Configuration conf = new Configuration();
                String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
                if (otherArgs.length != 2) {
                    System.err.println("Usage: TopTenRatedBusiness <in> <out>");
                    System.exit(2);

                }
                /*
                 * Create a job with name "TopTenRatedBusiness"
                 */

                Job job = new Job(conf, "TopTenRatedBusiness");
                job.setJarByClass(TopTenRatedBusiness.class);

                job.setMapperClass(BusinessRatingMapper.class);
                job.setMapOutputKeyClass(Text.class);
                job.setMapOutputValueClass(FloatWritable.class);

                job.setReducerClass(BusinessRatingReducer.class);
                job.setOutputKeyClass(Text.class);
                job.setOutputValueClass(FloatWritable.class);

                FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
                FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
                System.exit(job.waitForCompletion(true) ? 0 : 1);

        }

}

我的数据集:

review.csv文件包含用户向企业提供的星级评分。使用user_id将该评论与同一用户的其他评论相关联。使用business_id将此审核与同一企业的其他人相关联。

review.csv file contains the following columns "review_id"::"user_id"::"business_id"::"stars" 
'review_id': (a unique identifier for the review) 
'user_id': (the identifier of the reviewed business), 
'business_id': (the identifier of the authoring user), 
'stars': (star rating, integer 1-5),the rating given by the user to a business

运行时出现以下错误:

17/10/09 21:18:33 INFO input.FileInputFormat: Total input paths to process : 1
17/10/09 21:18:33 INFO util.NativeCodeLoader: Loaded the native-hadoop library
17/10/09 21:18:33 WARN snappy.LoadSnappy: Snappy native library not loaded
17/10/09 21:18:34 INFO mapred.JobClient: Running job: job_201710090351_0033
17/10/09 21:18:35 INFO mapred.JobClient:  map 0% reduce 0%
17/10/09 21:18:41 INFO mapred.JobClient: Task Id : attempt_201710090351_0033_m_000000_0, Status : FAILED
java.lang.ArrayIndexOutOfBoundsException: 2
    at bd.TopTenRatedBusiness$BusinessRatingMapper.map(TopTenRatedBusiness.java:37)
    at bd.TopTenRatedBusiness$BusinessRatingMapper.map(TopTenRatedBusiness.java:26)
    at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
    at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)
    at org.apache.hadoop.mapred.Child.main(Child.java:249)

17/10/09 21:18:47 INFO mapred.JobClient: Task Id : attempt_201710090351_0033_m_000000_1, Status : FAILED
java.lang.ArrayIndexOutOfBoundsException: 2
    at bd.TopTenRatedBusiness$BusinessRatingMapper.map(TopTenRatedBusiness.java:37)
    at bd.TopTenRatedBusiness$BusinessRatingMapper.map(TopTenRatedBusiness.java:26)
    at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
    at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)
    at org.apache.hadoop.mapred.Child.main(Child.java:249)

17/10/09 21:18:52 INFO mapred.JobClient: Task Id : attempt_201710090351_0033_m_000000_2, Status : FAILED
java.lang.ArrayIndexOutOfBoundsException: 2
    at bd.TopTenRatedBusiness$BusinessRatingMapper.map(TopTenRatedBusiness.java:37)
    at bd.TopTenRatedBusiness$BusinessRatingMapper.map(TopTenRatedBusiness.java:26)
    at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
    at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)
    at org.apache.hadoop.mapred.Child.main(Child.java:249)

17/10/09 21:18:58 INFO mapred.JobClient: Job complete: job_201710090351_0033
17/10/09 21:18:58 INFO mapred.JobClient: Counters: 7
17/10/09 21:18:58 INFO mapred.JobClient:   Job Counters 
17/10/09 21:18:58 INFO mapred.JobClient:     Launched map tasks=4
17/10/09 21:18:58 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=0
17/10/09 21:18:58 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0
17/10/09 21:18:58 INFO mapred.JobClient:     Failed map tasks=1
17/10/09 21:18:58 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=23391
17/10/09 21:18:58 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0
17/10/09 21:18:58 INFO mapred.JobClient:     Data-local map tasks=4

几个样本输入行

0xuZfa0t4MNWd3eIFF02ug::kT43SxDgMGzbeXpO51f0hQ::wbpbaWBfU54JbjLIDwERQA::5.0
bBqVqhOvNgFs8I1Wk68QUQ::T9hGHsbJW9Hw1cJAlIAWmw::4iTRjN_uAdAb7_YZDVHJdg::5.0
fu7TcxnAOdnbdLcyFhMmZg::Z_WAxc4RUpKp3y12BH1bEg::qw5gR8vW7mSOK4VROSwdMA::4.0
LMy8UOKOeh0b9qrz-s1fQA::OlMjqqzWZUv2-62CSqKq_A::81IjU5L-t-QQwsE38C63hQ::4.0
JjyRj9EiBXQTFDQAxRtt4g::fs5bpfk-2pvq2v8S1De5pQ::Hnz1_h_D1eHSRtQqHSCZkw::2.0

2 个答案:

答案 0 :(得分:0)

此行显示错误

context.write(new Text(reviews[2]), new FloatWritable(Float.parseFloat(reviews[3])));

尝试使用调试器来解决此问题

答案 1 :(得分:0)

您的代码适用于示例输入。

所以它看起来是您的数据的问题,其中将存在无法处理的错误行。您可以检查是否有任何标题列,或者您需要查看完整文件。

您可以检查的另一件事是您提供的输入目录路径是唯一的review.CSV文件而没有其他内容。