您好。
我试图在Cython中开发一个后缀计算器,从一个正在运行的Numpy版本翻译而来。这是我的第一次尝试。计算器函数获取列表中的后缀表达式和样本矩阵。然后,它必须返回计算出的数组。
输入示例:
postfix = ['X0', 'X1', 'add']
samples = [[0, 1],
[2, 3],
[4, 5]]
result = [1, 5, 9]
example_cython.pyx
#cython: boundscheck=False, wraparound=False, nonecheck=False
import numpy
from libc.math cimport sin as c_sin
cdef inline calculate(list lst, double [:,:] samples):
cdef int N = samples.shape[0]
cdef int i, j
cdef list stack = []
cdef double[:] Y = numpy.zeros(N)
for p in lst:
if p == 'add':
b = stack.pop()
a = stack.pop()
for i in range(N):
Y[i] = a[i] + b[i]
stack.append(Y)
elif p == 'sub':
b = stack.pop()
a = stack.pop()
for i in range(N):
Y[i] = a[i] - b[i]
stack.append(Y)
elif p == 'mul':
b = stack.pop()
a = stack.pop()
for i in range(N):
Y[i] = a[i] * b[i]
stack.append(Y)
elif p == 'div':
b = stack.pop()
a = stack.pop()
for i in range(N):
if abs(b[i]) < 1e-4: b[i]=1e-4
Y[i] = a[i] / b[i]
stack.append(Y)
elif p == 'sin':
a = stack.pop()
for i in range(N):
Y[i] = c_sin(a[i])
stack.append(Y)
else:
if p[0] == 'X':
j = int(p[1:])
stack.append (samples[:, j])
else:
stack.append(float(p))
return stack.pop ()
# Generate and evaluate expressions
cpdef test3(double [:,:] samples, object _opchars, object _inputs, int nExpr):
for i in range(nExpr):
size = 2
postfix = list(numpy.concatenate((numpy.random.choice(_inputs, 5*size),
numpy.random.choice(_inputs + _opchars, size),
numpy.random.choice(_opchars, size)), 0))
#print postfix
res = calculate(postfix, samples)
main.py
import random
import time
import numpy
from example_cython import test3
# Random dataset
n = 1030
nDim=10
samples = numpy.random.uniform(size=(n, nDim))
_inputs = ['X'+str(i) for i in range(nDim)]
_ops_1 = ['sin']
_ops_2 = ['add', 'sub', 'mul', 'div']
_opchars = _ops_1 + _ops_2
nExpr = 1000
nTrials = 3
tic = time.time ()
for i in range(nTrials): test3(samples, _opchars, _inputs, nExpr)
print ("TEST 1: It took an average of {} seconds to evaluate {} expressions on a dataset of {} rows and {} columns.".format(str((time.time () - tic)/nTrials), str(nExpr), str(n), str(nDim)))
setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules=[ Extension("example_cython",
["example_cython.pyx"],
libraries=["m"],
extra_compile_args = ["-Ofast", "-ffast-math"])]
setup(
name = "example_cython",
cmdclass = {"build_ext": build_ext},
ext_modules = ext_modules)
配置:
Python 3.6.2 |Anaconda, Inc.| (default, Sep 21 2017, 18:29:43)
[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin
>>> numpy.__version__
'1.13.1'
>>> cython.__version__
'0.26.1'
编译并运行:
running build_ext
skipping 'example_cython.c' Cython extension (up-to-date)
building 'example_cython' extension
/usr/bin/clang -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -fwrapv -O2 -Wall -Wstrict-prototypes -march=core2 -mtune=haswell -mssse3 -ftree-vectorize -fPIC -fPIE -fstack-protector-strong -O2 -pipe -march=core2 -mtune=haswell -mssse3 -ftree-vectorize -fPIC -fPIE -fstack-protector-strong -O2 -pipe -I/Users/vmelo/anaconda3/include/python3.6m -c example_cython.c -o build/temp.macosx-10.9-x86_64-3.6/example_cython.o -Ofast -ffast-math
example_cython.c:2506:15: warning: code will never be executed [-Wunreachable-code]
if (0 && (__pyx_tmp_idx < 0 || __pyx_tmp_idx >= __pyx_tmp_shape)) {
^~~~~~~~~~~~~
example_cython.c:2506:9: note: silence by adding parentheses to mark code as explicitly dead
if (0 && (__pyx_tmp_idx < 0 || __pyx_tmp_idx >= __pyx_tmp_shape)) {
^
/* DISABLES CODE */ ( )
example_cython.c:2505:9: warning: code will never be executed [-Wunreachable-code]
__pyx_tmp_idx += __pyx_tmp_shape;
^~~~~~~~~~~~~
example_cython.c:2504:9: note: silence by adding parentheses to mark code as explicitly dead
if (0 && (__pyx_tmp_idx < 0))
^
/* DISABLES CODE */ ( )
2 warnings generated.
/usr/bin/clang -bundle -undefined dynamic_lookup -Wl,-pie -Wl,-headerpad_max_install_names -Wl,-rpath,/Users/vmelo/anaconda3/lib -L/Users/vmelo/anaconda3/lib -Wl,-pie -Wl,-headerpad_max_install_names -Wl,-rpath,/Users/vmelo/anaconda3/lib -L/Users/vmelo/anaconda3/lib -arch x86_64 build/temp.macosx-10.9-x86_64-3.6/example_cython.o -L/Users/vmelo/anaconda3/lib -lm -o /Users/vmelo/Dropbox/SRC/python/random_equation/cython_v2/example_cython.cpython-36m-darwin.so
ld: warning: -pie being ignored. It is only used when linking a main executable
TEST 1: It took an average of 1.2609198093414307 seconds to evaluate 1000 expressions on a dataset of 1030 rows and 10 columns.
在我的i5 1.4Ghz上运行需要大约1,25秒。但是,类似的C代码需要0.13秒。
上面的代码评估了1000个表达式,但我的目标是1,000,000。因此,我必须大幅加速这个Cython代码。
正如我在开头写的那样,Numpy版本正常运行。 也许,在这个Cython版本中,我不应该使用列表作为堆栈?我仍然没有检查这个Cython代码生成的结果是否正确,因为我专注于提高其速度。
有什么建议吗?
感谢。
答案 0 :(得分:1)
目前唯一优化的操作是索引samples[:, j]
。 (差不多)其他一切都是无类型的,因此Cython无法对其进行优化。
我并不想完全重写你的(相当大的)程序,但这里有一些关于如何改进它的简单想法。
修复基本逻辑错误 - 您需要循环内的行Y = numpy.zeros(N)
。 stack.append(Y)
不会复制Y
,因此每次修改Y
时,您也会修改已放入堆栈的所有其他版本。
设置a
和b
的类型:
cdef double[:] a, b # at the start of the program
这将显着加快
的索引Y[i] = a[i] * b[i]
然而,它会导致像a = stack.pop()
这样的行稍慢,因为它需要检查结果是否可以用作内存视图。您还需要更改行
stack.append(float(p))
确保在堆栈中放入可用于内存视图的内容:
stack.append(float(p)*np.ones(N))
将堆栈更改为2D内存视图。我建议你过度分配它,只保留number_on_stack
的计数,然后根据需要重新分配堆栈。然后你可以改变:
stack.append(samples[:, j])
为:
if stack.shape[1] < number_on_stack+1:
# resize numpy array
arr = stack.base
arr.resize(... larger shape ..., refcheck=False)
stack = arr # re-link stack to resized array (to ensure size is suitably updated)
stack[:,number_on_stack+1] = samples[:,j]
number_on_stack += 1
和
a = stack.pop()
到
a = stack[:,number_on_stack]
number_on_stack -= 1
其他变化遵循类似的模式。此选项是最常用的,但可能会获得最佳效果。
使用cython -a
生成彩色HTML可以让您合理地了解哪些位已经过优化(黄色代码通常更差)