我想要列出各种变量名称,并将它们全部作为实例变量分配给一个类。
此外,我还想从数据库为这些实例变量分配属性。
例如:我有一个带标题的数据框,(' col1',' col2',' col3',' col4') 。每行应该是一个类实例,每列应该是该类的实例变量。然后,每行中的值应该作为每个类实例的属性分配给每个实例变量。
我怎么能做到这一点?
这是一个变量列表:
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd',
'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
'SaleCondition', 'SalePrice'],
dtype='object')
以下是一个示例数据框:
import pandas as pd
from numpy import nan
d = {'name' : pd.Series(['steve', 'jeff', 'bob'], index=['1', '2', '3']),
....: 'salary' : pd.Series([34, 85, 213], index=['1', '2', '3']), 'male' : pd.Series([1, nan, 0], index=['1', '2', '3']), 'score' : pd.Series([1.46, 0.8, 3.], index=['1', '2', '3'])}
df = pd.DataFrame(d)
答案 0 :(得分:1)
这很适合namedtuple。
#! /usr/bin/env python3
import collections
import pandas as pd
if __name__ == '__main__':
Person = collections.namedtuple('Person', 'male name salary score')
d = {'name': pd.Series(['steve', 'jeff', 'bob'], index=['1', '2', '3']),
'salary': pd.Series([34, 85, 213], index=['1', '2', '3']),
'male': pd.Series([1, float('NaN'), 0], index=['1', '2', '3']),
'score': pd.Series([1.46, 0.8, 3.], index=['1', '2', '3'])}
df = pd.DataFrame(d, columns=sorted(d.keys()))
print(df)
for row in df.values:
print(Person(*row.tolist()))
输出:
male name salary score
1 1.0 steve 34 1.46
2 NaN jeff 85 0.80
3 0.0 bob 213 3.00
Person(male=1.0, name='steve', salary=34, score=1.46)
Person(male=nan, name='jeff', salary=85, score=0.8)
Person(male=0.0, name='bob', salary=213, score=3.0)
答案 1 :(得分:1)
您可以使用df.to_dict('records')
生成词典列表
[{'male': 1.0, 'name': 'steve', 'salary': 34, 'score': 1.46},
{'male': nan, 'name': 'jeff', 'salary': 85, 'score': 0.8},
{'male': 0.0, 'name': 'bob', 'salary': 213, 'score': 3.0}]
然后你可以做这样的事情来创建你的清单,
class Person(object):
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
people = [Person(**x) for x in df.to_dict('records')]