我有按ID分组的月度数据,ID也有父ID。数据如下所示:
data = pd.DataFrame({'parent_id': [1, 1, 1, 1, 1, 1, -99999, -99999, -99999],
'id': [123, 123, 123, 123, 123, 123, 123, 123, 123],
'data_1': [10, 20, 30, 40, 50, 60, 0, 0, 0],
'data_2': [10, 20, 30, 40, 50, 60, 0, 0, 0],
'period': [0, 1, 2, 3, 4, 5, 6, 7, 8],
'date': ['2017-06-30', '2017-07-31', '2017-08-31',
'2017-09-30', '2017-10-31', '2017-11-30',
'2017-12-31', '2018-01-31', '2018-02-28'],
'quarter': [0, 0, 0, 1, 1, 1, 2, 2, 2]})
data_2 = pd.DataFrame({'parent_id': [1, 1, 1, 1, 1, 1, -99999, -99999, -99999],
'id': [234, 234, 234, 234, 234, 234, 234, 234, 234],
'data_1': [10, 20, 30, 40, 50, 60, 0, 0, 0],
'data_2': [10, 20, 30, 40, 50, 60, 0, 0, 0],
'period': [0, 1, 2, 3, 4, 5, 6, 7, 8],
'date': ['2017-06-30', '2017-07-31', '2017-08-31',
'2017-09-30', '2017-10-31', '2017-11-30',
'2017-12-31', '2018-01-31', '2018-02-28'],
'quarter': [0, 0, 0, 1, 1, 1, 2, 2, 2]})
data = data.append(data_2)
data = data.reindex()
我有一个函数,当我有一个id时可以工作,但是当我引入多个ID时,求和并不是唯一的ID。
def convert_to_quarterly(df, date):
"""Aggregates 3 months of data to a quarterly value."""
columns = ['data_1', 'data_2']
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
df_quarterly = df.resample('Q')[columns].sum()
df_quarterly['date'] = df_quarterly.index
df['date'] = df.index
df.drop(columns, axis=1, inplace=True)
df = pd.merge(df, df_quarterly)
return df
convert_to_quarterly(data, date=pd.to_datetime('2017-06-30'))
我需要做些什么才能使Pandas仅对各个ID组进行求和?
答案 0 :(得分:2)
如果您还没有这样做,则需要将日期列正式设置为日期时间类型。然后你可以使用groupby然后重新采样。
Print