我有一个火花数据帧,它有两个由函数collect_set组成的列。我想将这两列集合组合成1列集合。我该怎么办?它们都是字符串集
对于实例,我通过调用collect_set
形成了2列Fruits | Meat
[Apple,Orange,Pear] [Beef, Chicken, Pork]
如何将其转换为:
Food
[Apple,Orange,Pear, Beef, Chicken, Pork]
非常感谢您的帮助
答案 0 :(得分:4)
我也在Python中解决这个问题,所以这里有一个Ramesh的Python解决方案的端口:
df = spark.createDataFrame([(['Pear','Orange','Apple'], ['Chicken','Pork','Beef'])],
("Fruits", "Meat"))
df.show(1,False)
from pyspark.sql.functions import udf
mergeCols = udf(lambda fruits, meat: fruits + meat)
df.withColumn("Food", mergeCols(col("Fruits"), col("Meat"))).show(1,False)
输出:
+---------------------+---------------------+
|Fruits |Meat |
+---------------------+---------------------+
|[Pear, Orange, Apple]|[Chicken, Pork, Beef]|
+---------------------+---------------------+
+---------------------+---------------------+------------------------------------------+
|Fruits |Meat |Food |
+---------------------+---------------------+------------------------------------------+
|[Pear, Orange, Apple]|[Chicken, Pork, Beef]|[Pear, Orange, Apple, Chicken, Pork, Beef]|
+---------------------+---------------------+------------------------------------------+
感谢Ramesh!
编辑:请注意,您可能必须手动指定列类型(不确定为什么它仅在某些情况下对我有用而没有明确的类型规范 - 在其他情况下我得到一个字符串类型列)。
from pyspark.sql.types import *
mergeCols = udf(lambda fruits, meat: fruits + meat, ArrayType(StringType()))
答案 1 :(得分:2)
鉴于你有dataframe
为
+---------------------+---------------------+
|Fruits |Meat |
+---------------------+---------------------+
|[Pear, Orange, Apple]|[Chicken, Pork, Beef]|
+---------------------+---------------------+
您可以编写udf
函数将两列的集合合并为一个。
import org.apache.spark.sql.functions._
def mergeCols = udf((fruits: mutable.WrappedArray[String], meat: mutable.WrappedArray[String]) => fruits ++ meat)
然后将udf
函数调用为
df.withColumn("Food", mergeCols(col("Fruits"), col("Meat"))).show(false)
您应该拥有所需的最终dataframe
+---------------------+---------------------+------------------------------------------+
|Fruits |Meat |Food |
+---------------------+---------------------+------------------------------------------+
|[Pear, Orange, Apple]|[Chicken, Pork, Beef]|[Pear, Orange, Apple, Chicken, Pork, Beef]|
+---------------------+---------------------+------------------------------------------+
答案 2 :(得分:0)
我们说df
有
+--------------------+--------------------+
| Fruits| Meat|
+--------------------+--------------------+
|[Pear, Orange, Ap...|[Chicken, Pork, B...|
+--------------------+--------------------+
然后
import itertools
df.rdd.map(lambda x: [item for item in itertools.chain(x.Fruits, x.Meat)]).collect()
创建一组Fruits
& Meat
合并为一组,即
[[u'Pear', u'Orange', u'Apple', u'Chicken', u'Pork', u'Beef']]
希望这有帮助!