我尝试通过import_graph_def()
读取RNN网络并进行推理。
但我无法使用tf.trainable_variables()
来获取任何变量。
在以下代码中,tf.trainable_variables()
返回[](没有任何内容的列表)
此外,当我使用saver = tf.train.Saver()
时,tensorflow报告“没有要保存的变量”
def eval_on_test(graph_path):
batch_size = 80
train_begin = 0
train_end = 3000
with tf.Graph().as_default() as graph:
with open(graph_path, 'rb') as f:
tf_graph = tf.GraphDef()
print("Loading graph_def from {}".format(graph_path))
tf_graph.ParseFromString(f.read())
return_elements = tf.import_graph_def(tf_graph, name="", return_elements=['input_x:0', 'output_y:0', 'pred:0', 'loss:0'])
X = return_elements[0]
Y = return_elements[1]
pred = return_elements[2]
loss = return_elements[3]
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
print("graph loaded, start testing")
with tf.Session(config=tf_config) as sess:
init_op = sess.graph.get_operation_by_name('init')
sess.run(init_op)
print(tf.trainable_variables())
batch_index,train_x,train_y=get_train_data(batch_size,time_step,train_begin,train_end)
for batch in range(len(batch_index)-1):
loss_ = sess.run(loss, feed_dict={X:train_x[batch_index[batch]:batch_index[batch+1]],Y:train_y[batch_index[batch]:batch_index[batch+1]]})
print(batch, loss_)
任何帮助都将不胜感激。
答案 0 :(得分:0)
cd breakpad
git clone https://chromium.googlesource.com/linux-syscall-support src/third_party/lss
只会恢复图表,但不会恢复import_graph_def
等集合,这就是GLOBAL_VARIABLES
无法在图表中找到任何变量的原因,以解决此问题,您可以尝试Saver
,这也将恢复所有集合。