在转动pandas数据帧后无法读取列

时间:2017-10-06 11:39:56

标签: python pandas pivot

我有一张表,我来自一个数据透视表,以消除缺失值和太短的值,如城市名称,这是我的代码

company = pd.read_sql('SELECT user_id, address FROM company' , con=db_connection)
table = pd.pivot_table(company, index=['address'],aggfunc=np.sum)
table.reset_index()

然后我得到了他的

    address                                             user_id
3   Jl. Raya Kranggan No. 7, Ruko Kav V No. 1 Jat...    65132
4   #ALAMAT atau LOKASI\r\nKota bengkulu perhubung...   15570
5   '--!>'</script/><Svg/Onload=confirm`alamat bis...   48721
6   (Rumah Bpk.RA'IS) Jl.Puskesmas RT.004/11 No.29...   20786

检查列时似乎没问题

table.columns
Index(['user_id', 'address'], dtype='object')

然后我不能打电话给专栏

table['address']

当我调用该列时,就会发生这种情况

 KeyError                                  Traceback (most recent call last)
    C:\Users\asus\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
       2392             try:
    -> 2393                 return self._engine.get_loc(key)
       2394             except KeyError:

    pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5239)()

    pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5085)()

    pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20405)()

    pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20359)()

KeyError: 'address'

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
<ipython-input-46-eef3b78ea5fd> in <module>()
----> 1 table['address'] #.astype(str)

C:\Users\asus\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
   2060             return self._getitem_multilevel(key)
   2061         else:
-> 2062             return self._getitem_column(key)
   2063 
   2064     def _getitem_column(self, key):

C:\Users\asus\Anaconda3\lib\site-packages\pandas\core\frame.py in _getitem_column(self, key)
   2067         # get column
   2068         if self.columns.is_unique:
-> 2069             return self._get_item_cache(key)
   2070 
   2071         # duplicate columns & possible reduce dimensionality

C:\Users\asus\Anaconda3\lib\site-packages\pandas\core\generic.py in _get_item_cache(self, item)
   1532         res = cache.get(item)
   1533         if res is None:
-> 1534             values = self._data.get(item)
   1535             res = self._box_item_values(item, values)
   1536             cache[item] = res

C:\Users\asus\Anaconda3\lib\site-packages\pandas\core\internals.py in get(self, item, fastpath)
   3588 
   3589             if not isnull(item):
-> 3590                 loc = self.items.get_loc(item)
   3591             else:
   3592                 indexer = np.arange(len(self.items))[isnull(self.items)]

C:\Users\asus\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2393                 return self._engine.get_loc(key)
   2394             except KeyError:
-> 2395                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   2396 
   2397         indexer = self.get_indexer([key], method=method, tolerance=tolerance)

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5239)()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5085)()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20405)()

pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\hashtable.c:20359)()

KeyError: 'address'

如果您有其他解决方案,只要我可以将地址映射到keyword mapping

就可以了

2 个答案:

答案 0 :(得分:2)

我认为您需要返回reset_index的输出,因为address是索引名称,没有列:

table = pd.pivot_table(company, index='address',aggfunc=np.sum).reset_index()

另一种解决方案,如果要为聚合sum定义列:

table = company.groupby('address', as_index=False)['user_id'].sum()

或者:

table = company.groupby('address')['user_id'].sum().reset_index()

对于所有列:

table = company.groupby('address', as_index=False).sum()
table = company.groupby('address').sum().reset_index()

答案 1 :(得分:2)

我认为pivot在这里不是一个合适的选择。

您可以使用:

company.groupby('address').sum()