我在C中关注这个PI Calculation示例,以比较串行和并行版本的执行时间。我使用gettimeofday()来衡量执行时间。但执行时间大致相同。我的代码有什么问题吗?或测量时间的方法?
我的代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
int main()
{
struct timeval tvalBefore, tvalAfter;
gettimeofday(&tvalBefore, NULL);
#define sqr(x) ((x)*(x))
long random(void);
double x_coord, y_coord, pi, r;
int score, n;
unsigned int cconst;
int darts = 5000000;
if (sizeof(cconst) != 4) {
printf("Wrong data size for cconst variable!\nQuitting.\n");
exit(1);
}
cconst = 2 << (31 - 1);
score = 0;
for (n = 1; n <= darts; n++) {
r = (double)random() / cconst;
x_coord = (2.0 * r) - 1.0;
r = (double)random() / cconst;
y_coord = (2.0 * r) - 1.0;
if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)
score++;
}
pi = 4.0 * (double)score / (double)darts;
gettimeofday(&tvalAfter, NULL);
long tm = (tvalAfter.tv_sec - tvalBefore.tv_sec) * 1000000L + tvalAfter.tv_usec - tvalBefore.tv_usec;
printf("PI = %lf\nSerial execution time: %ld microseconds\n", pi, tm);
return 0;
}
/**********************************************************************
* FILE: mpi_pi_reduce.c
* OTHER FILES: dboard.c
* DESCRIPTION:
* MPI pi Calculation Example - C Version
* Collective Communication example:
* This program calculates pi using a "dartboard" algorithm. See
* Fox et al.(1988) Solving Problems on Concurrent Processors, vol.1
* page 207. All processes contribute to the calculation, with the
* master averaging the values for pi. This version uses mpc_reduce to
* collect results
* AUTHOR: Blaise Barney. Adapted from Ros Leibensperger, Cornell Theory
* Center. Converted to MPI: George L. Gusciora, MHPCC (1/95)
* LAST REVISED: 06/13/13 Blaise Barney
**********************************************************************/
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void srandom (unsigned seed);
double dboard (int darts);
#define DARTS 50000 /* number of throws at dartboard */
#define ROUNDS 100 /* number of times "darts" is iterated */
#define MASTER 0 /* task ID of master task */
int main (int argc, char *argv[])
{
struct timeval tvalBefore, tvalAfter;
gettimeofday(&tvalBefore, NULL);
double homepi, /* value of pi calculated by current task */
pisum, /* sum of tasks' pi values */
pi, /* average of pi after "darts" is thrown */
avepi; /* average pi value for all iterations */
int taskid, /* task ID - also used as seed number */
numtasks, /* number of tasks */
rc, /* return code */
i;
MPI_Status status;
/* Obtain number of tasks and task ID */
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
printf ("MPI task %d has started...\n", taskid);
/* Set seed for random number generator equal to task ID */
srandom (taskid);
avepi = 0;
for (i = 0; i < ROUNDS; i++) {
/* All tasks calculate pi using dartboard algorithm */
homepi = dboard(DARTS);
/* Use MPI_Reduce to sum values of homepi across all tasks
* Master will store the accumulated value in pisum
* - homepi is the send buffer
* - pisum is the receive buffer (used by the receiving task only)
* - the size of the message is sizeof(double)
* - MASTER is the task that will receive the result of the reduction
* operation
* - MPI_SUM is a pre-defined reduction function (double-precision
* floating-point vector addition). Must be declared extern.
* - MPI_COMM_WORLD is the group of tasks that will participate.
*/
rc = MPI_Reduce(&homepi, &pisum, 1, MPI_DOUBLE, MPI_SUM,
MASTER, MPI_COMM_WORLD);
/* Master computes average for this iteration and all iterations */
if (taskid == MASTER) {
pi = pisum/numtasks;
avepi = ((avepi * i) + pi)/(i + 1);
//printf(" After %8d throws, average value of pi = %10.8f\n", (DARTS * (i + 1)),avepi);
}
}
if (taskid == MASTER) {
gettimeofday(&tvalAfter, NULL);
long tm = (tvalAfter.tv_sec - tvalBefore.tv_sec) * 1000000L + tvalAfter.tv_usec - tvalBefore.tv_usec;
printf("\nReal value of PI: 3.1415926535897 \n");
printf("Parallel execution time: %ld microseconds\n", tm);
}
MPI_Finalize();
return 0;
}
/**************************************************************************
* subroutine dboard
* DESCRIPTION:
* Used in pi calculation example codes.
* See mpi_pi_send.c and mpi_pi_reduce.c
* Throw darts at board. Done by generating random numbers
* between 0 and 1 and converting them to values for x and y
* coordinates and then testing to see if they "land" in
* the circle." If so, score is incremented. After throwing the
* specified number of darts, pi is calculated. The computed value
* of pi is returned as the value of this function, dboard.
*
* Explanation of constants and variables used in this function:
* darts = number of throws at dartboard
* score = number of darts that hit circle
* n = index variable
* r = random number scaled between 0 and 1
* x_coord = x coordinate, between -1 and 1
* x_sqr = square of x coordinate
* y_coord = y coordinate, between -1 and 1
* y_sqr = square of y coordinate
* pi = computed value of pi
****************************************************************************/
double dboard(int darts)
{
#define sqr(x) ((x)*(x))
long random(void);
double x_coord, y_coord, pi, r;
int score, n;
unsigned int cconst; /* must be 4-bytes in size */
/*************************************************************************
* The cconst variable must be 4 bytes. We check this and bail if it is
* not the right size
************************************************************************/
if (sizeof(cconst) != 4) {
printf("Wrong data size for cconst variable in dboard routine!\n");
printf("See comments in source file. Quitting.\n");
exit(1);
}
/* 2 bit shifted to MAX_RAND later used to scale random number between 0 and 1 */
cconst = 2 << (31 - 1);
score = 0;
/* "throw darts at board" */
for (n = 1; n <= darts; n++) {
/* generate random numbers for x and y coordinates */
r = (double)random()/cconst;
x_coord = (2.0 * r) - 1.0;
r = (double)random()/cconst;
y_coord = (2.0 * r) - 1.0;
/* if dart lands in circle, increment score */
if ((sqr(x_coord) + sqr(y_coord)) <= 1.0)
score++;
}
/* calculate pi */
pi = 4.0 * (double)score/(double)darts;
return(pi);
}
我编写并运行了集群上的代码。我遵守并使用
运行代码mpicc serial.c -o serial.o
mpicc parallel.c -o parallel.o
mpirun -n 1 serial.o
mpirun -np 4 -pernode parallel.o
结果是:
# serial
PI = 3.142431
Serial execution time: 262699 microseconds
# parallel
MPI task 1 has started...
MPI task 0 has started...
MPI task 3 has started...
MPI task 2 has started...
Real value of PI: 3.1415926535897
Parallel execution time: 294984 microseconds
答案 0 :(得分:2)
并行化在哪里?
5,000,000
次迭代中的串行版计算pi。
在并行版本中,每个任务也执行50,000 * 100
次迭代,然后取平均值。
因此,并行版本可能“在统计上更准确”,但不会更快。
另外,当我认为只需要一个500
MPI_Reduce()
时,你会这样做。
最重要的是,我甚至惊讶于“并行”版本并没有太慢。
如果您想通过并行化更快地运行,每个任务都应该从5,000,000 / numtasks
开始计算5,000,000 * taskid / numtasks
次迭代,然后您应该发出一个MPI_Reduce()
。