我正在使用Pandas从API获取数据。 API以JSON格式返回数据。然而,json在数据帧中有一些我不想要的值。由于这些值,我无法为数据框分配索引。以下是格式。
{
"Success": true,
"message": "",
"result": [{"id":12312312, "TimeStamp":"2017-10-04T17:39:53.92","Quantity":3.03046306,},{"id": 2342344, "TimeStamp":"2017-10-04T17:39:53.92","Quantity":3.03046306,}]}
我只对"结果感兴趣"部分。
一种方法是使用request.get(request_URL)
导入json,然后在提取"结果"部分,将结果转换为数据帧。
第二种方法是导入数据Pandas.read_json(JSON_URL)
将返回的数据帧转换回json,然后提取"结果" part,将结果转换为数据帧。
还有其他办法吗?什么是最好的方法,为什么?感谢。
答案 0 :(得分:8)
使用Extracting token value from the response :
from pandas.io.json import json_normalize
df = json_normalize(json['result'])
print (df)
Quantity TimeStamp id
0 3.030463 2017-10-04T17:39:53.92 12312312
1 3.030463 2017-10-04T17:39:53.92 2342344
也在这里工作:
df = pd.DataFrame(d['result'])
print (df)
Quantity TimeStamp id
0 3.030463 2017-10-04T17:39:53.92 12312312
1 3.030463 2017-10-04T17:39:53.92 2342344
DatetimeIndex
转换列json_normalize
和to_datetime
:
df['TimeStamp'] = pd.to_datetime(df['TimeStamp'])
df = df.set_index('TimeStamp')
print (df)
Quantity id
TimeStamp
2017-10-04 17:39:53.920 3.030463 12312312
2017-10-04 17:39:53.920 3.030463 2342344
编辑:
加载数据解决方案:
from urllib.request import urlopen
import json
from pandas.io.json import json_normalize
response = urlopen("https://bittrex.com/api/v1.1/public/getmarkethistory?market=BTC-ETC")
json_data = response.read().decode('utf-8', 'replace')
d = json.loads(json_data)
df = json_normalize(d['result'])
df['TimeStamp'] = pd.to_datetime(df['TimeStamp'])
df = df.set_index('TimeStamp')
print (df.head())
Quantity Total
TimeStamp
2017-10-05 06:05:06.510 3.579201 0.010000
2017-10-05 06:04:34.060 45.614760 0.127444
2017-10-05 06:04:34.060 5.649898 0.015785
2017-10-05 06:04:34.060 1.769847 0.004945
2017-10-05 06:02:25.063 0.250000 0.000698
另一种解决方案:
df = pd.read_json('https://bittrex.com/api/v1.1/public/getmarkethistory?market=BTC-ETC')
df = pd.DataFrame(df['result'].values.tolist())
df['TimeStamp'] = pd.to_datetime(df['TimeStamp'])
df = df.set_index('TimeStamp')
print (df.head())
Quantity Total
TimeStamp
2017-10-05 06:11:25.100 5.620957 0.015704
2017-10-05 06:11:11.427 22.853546 0.063851
2017-10-05 06:10:30.600 6.999213 0.019555
2017-10-05 06:10:29.163 20.000000 0.055878
2017-10-05 06:10:29.163 0.806039 0.002252
答案 1 :(得分:0)
另一种解决方案,基于jezrael使用请求:
import requests
import pandas as pd
d = requests.get("https://bittrex.com/api/v1.1/public/getmarkethistory?market=BTC-ETC").json()
df = pd.DataFrame.from_dict(d['result'])
df['TimeStamp'] = pd.to_datetime(df['TimeStamp'])
df = df.set_index('TimeStamp')
df