我试图对两个对象进行分类。我想从evaluate.py
脚本中获得准确度和交叉熵。
这是我正在尝试的代码。
evaluate.py (by tensorflow for poets)
#!/usr/bin/python
#
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import argparse
import numpy as np
import PIL.Image as Image
import tensorflow as tf
import scripts.retrain as retrain
from scripts.count_ops import load_graph
def evaluate_graph(graph_file_name):
with load_graph(graph_file_name).as_default() as graph:
ground_truth_input = tf.placeholder(
tf.float32, [None, 5], name='GroundTruthInput')
image_buffer_input = graph.get_tensor_by_name('input:0')
final_tensor = graph.get_tensor_by_name('final_result:0')
accuracy, _ = retrain.add_evaluation_step(final_tensor, ground_truth_input)
logits = graph.get_tensor_by_name("final_training_ops/Wx_plus_b/add:0")
xent = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
labels=ground_truth_input,
logits=logits))
#image_dir = 'tf_files/flower_photos'
image_dir = 'tf_files/test_images'
testing_percentage = 10
validation_percentage = 10
validation_batch_size = 100
category = 'testing'
image_lists = retrain.create_image_lists(
image_dir, testing_percentage,
validation_percentage)
class_count = len(image_lists.keys())
ground_truths = []
filenames = []
for label_index, label_name in enumerate(image_lists.keys()):
for image_index, image_name in enumerate(image_lists[label_name][category]):
image_name = retrain.get_image_path(
image_lists, label_name, image_index, image_dir, category)
ground_truth = np.zeros([1, class_count], dtype=np.float32)
ground_truth[0, label_index] = 1.0
ground_truths.append(ground_truth)
filenames.append(image_name)
accuracies = []
xents = []
with tf.Session(graph=graph) as sess:
for filename, ground_truth in zip(filenames, ground_truths):
image = Image.open(filename).resize((224, 224), Image.ANTIALIAS)
image = np.array(image, dtype=np.float32)[None, ...]
image = (image - 128) / 128.0
feed_dict = {
image_buffer_input: image,
ground_truth_input: ground_truth}
eval_accuracy, eval_xent = sess.run([accuracy, xent], feed_dict)
accuracies.append(eval_accuracy)
xents.append(eval_xent)
return np.mean(accuracies), np.mean(xents)
if __name__ == "__main__":
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
accuracy, xent = evaluate_graph(*sys.argv[1:])
print('Accuracy: %g' % accuracy)
print('Cross Entropy: %g' % xent)
但是当我运行上面的脚本进行预测时,我收到以下错误:
ValueError:无法为Tensor提供形状值(1,224,224) u'input:0',其形状为'(1,224,224,3)'
如何解决此错误?
答案 0 :(得分:1)
您似乎正在将灰度图像输入到输入占位符中。灰度图像只有1个通道,因此形状(224, 224, )
(尺寸1的尺寸被省略),而您正在尝试的预训练网络需要具有3个通道和形状的RGB图像(224, 224, 3)
如果您的图片是实际的RGB,则可能会出现错误:
image = np.array(image, dtype=np.float32)[None, ...]
这个索引:[None, ...]
似乎没必要。
如果您的图像实际上是灰度图像,您可以使用PIL.convert()
将它们转换为RGB格式(一个通道将重复3次):
image = image.convert("RGB")
虽然使用频道复制运行3频道CNN效率低(对同一数据执行3次计算)并且可能比彩色图像表现更差,但这应该运行脚本并使您快速进入正轨。