我正在使用Tensorflow实现Canny算法(这需要使用边框作为评估指标,但这不是主题)。其中一个步骤是计算“非最大抑制”,其中包括将3x3区域中的中心元素归零,除非两个特定邻居较小。更多详情here。
如何使用Tensorflow实现此操作?
我实际上正在使用Keras,但Tensorflow解决方案也可以使用,作为参考,我的代码到目前为止看起来像这样:
def canny(img):
'''Canny border detection. The input should be a grayscale image.'''
gauss_kernel = np.array([[2, 4, 5, 4, 2],
[4, 9, 12, 9, 4],
[5, 12, 15, 12, 5],
[4, 9, 12, 9, 4],
[2, 4, 5, 4, 2]]).reshape(5, 5, 1, 1)
gauss_kernel = K.variable(1./159 * gauss_kernel)
Gx = K.variable(np.array([[-1., 0. ,1.],
[-2., 0., 2.],
[-1., 0., 1.]]).reshape(3, 3, 1, 1))
Gy = K.variable(np.array([[-1., -2., -1.],
[ 0., 0., 0.],
[ 1., 2., 1.]]).reshape(3, 3, 1, 1))
# Smooth image
smoothed = K.conv2d(img, gauss_kernel, padding='same')
# Derivative in x
Dx = K.conv2d(smoothed, Gx, padding='same')
# Derivative in y
Dy = K.conv2d(smoothed, Gy, padding='same')
# Take gradient strength
G = K.sqrt(K.square(Dx) + K.square(Dy))
# TODO: Non-maximum Suppression & Hysteresis Thresholding
return G
答案 0 :(得分:1)
你可以使用卷积滤波器来隔离两个目标像素,并使它们与中心像素“同心”。
例如,为了与两个目标像素进行比较,我们可以使用此滤波器,形状为(3, 3, 1, 2)
- 一个输入通道,两个输出通道。每个通道都将返回一个目标像素。
滤镜在目标像素处应该为1。剩下的就是零:
#taking two diagonal pixels
filter = np.zeros((3,3,1,2))
filter[0,0,0,0] = 1 #first pixel is top/left, passed to the first channel
filter[2,2,0,1] = 1 #second pixel is bottom/right, passed to the second channel
#which ones are really bottom or top, left or right depend on your preprocessing,
#but they should be consistent with the rest of your modeling
filter = K.variable(filter)
如果你是上下左右,你可以制作较小的过滤器。不需要3x3(也没问题),但只需要1x3或3x1:
filter1 = np.zeros((1,3,1,2)) #horizontal filter
filter2 = np.zeros((3,1,1,2)) #vertical filter
filter1[0,0,0,0] = 1 #left pixel - if filter is 3x3: [1,0,0,0]
filter1[0,2,0,1] = 1 #right pixel - if filter is 3x3: [1,2,0,1]
filter1 = K.variable(filter1)
filter2[0,0,0,0] = 1 #top pixel - if filter is 3x3: [0,1,0,0]
filter2[2,0,0,1] = 1 #bottom pxl - if filter is 3x3: [2,1,0,1]
filter2 = K.variable(filter2)
然后你将这些作为卷积来应用。您将为一个像素获得一个通道,为另一个像素获得另一个通道。然后,您可以比较它们,就好像它们都在同一个地方,只是在不同的渠道中:
targetPixels = K.conv2d(originalImages, kernel=filter, padding='same')
#two channels telling if the center pixel is greater than the pixel in the channel
isGreater = K.greater(originalImages,targetPixels)
#merging the two channels, considering they're 0 for false and 1 for true
isGreater = K.cast(isGreater,K.floatx())
isGreater = isGreater[:,:,:,:1] * isGreater[:,:,:,1:]
#now, the center pixel will remain if isGreater = 1 at that position:
result = originalImages * isGreater