我正在使用Scikit-Learn从事Python机器学习计划,该计划将根据内容将电子邮件分类为问题类型。例如:有人给我发电子邮件说"这个程序没有启动",机器将其分类为" Crash Issue"。
我使用SVM算法从2个CSV文件中读取电子邮件内容及其各自的类别标签。我写了两个程序:
培训计划:
import numpy as np
import pandas as pd
from pandas import DataFrame
import os
from sklearn import svm
from sklearn import preprocessing
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
###### Extract and Vectorize the features from each email in the Training Data ######
features_file = "features.csv" #The CSV file that contains the descriptions of each email. Features will be extracted from this text data
features_df = pd.read_csv(features_file, encoding='ISO-8859-1')
vectorizer = TfidfVectorizer()
features = vectorizer.fit_transform(features_df['Description'].values.astype('U')) #The sole column in the CSV file is labeled "Description", so we specify that here
###### Encode the class Labels of the Training Data ######
labels_file = "labels.csv" #The CSV file that contains the classification labels for each email
labels_df = pd.read_csv(labels_file, encoding='ISO-8859-1')
lab_enc = preprocessing.LabelEncoder()
labels = lab_enc.fit_transform(labels_df)
###### Create a classifier and fit it to our Training Data ######
clf = svm.SVC(gamma=0.01, C=100)
clf.fit(features, labels)
###### Output persistent model files ######
joblib.dump(clf, 'brain.pkl')
joblib.dump(vectorizer, 'vectorizer.pkl')
joblib.dump(lab_enc, 'lab_enc.pkl')
print("Training completed.")
预测计划:
import numpy as np
import os
from sklearn import svm
from sklearn import preprocessing
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
###### Load our model from our training program ######
clf = joblib.load('brain.pkl')
vectorizer = joblib.load('vectorizer.pkl')
lab_enc = joblib.load('lab_enc.pkl')
###### Prompt user for input, then make a prediction ######
print("Type an email's contents here and I will predict its category")
newData = [input(">> ")]
newDataFeatures = vectorizer.transform(newData)
print("I predict the category is: ", lab_enc.inverse_transform(clf.predict(newDataFeatures)))
###### Feedback loop - Tell the machine whether or not it was correct, and have it learn from the response ######
print("Was my prediction correct? y/n")
feedback = input(">> ")
inputValid = False
while inputValid == False:
if feedback == "y" or feedback == "n":
inputValid = True
else:
print("Response not understood. Was my prediction correct? y/n")
feedback = input(">> ")
if feedback == "y":
print("I was correct. I'll incorporate this new data into my persistent model to aid in future predictions.")
#refit the classifier using the new features and label
elif feedback == "n":
print("I was incorrect. What was the correct category?")
correctAnswer = input(">> ")
print("Got it. I'll incorporate this new data into my persistent model to aid in future predictions.")
#refit the classifier using the new features and label
从我所做的阅读中,我发现SVM并不真正支持增量学习,因此我认为我需要将新数据合并到旧的训练数据中并从头开始重新训练整个模型每次我都要添加新数据。这很好,但我不太确定如何实际实现它。我是否需要预测程序来更新两个CSV文件以包含新数据,以便重新开始培训?
答案 0 :(得分:0)
我最终弄清楚我的问题的概念性答案是我需要更新我最初用来训练机器的CSV文件。收到反馈后,我只是将新功能和标签写入各自的CSV文件,然后使用训练数据集中包含的新信息重新训练机器。