我们需要创建一个保持时间有效性的表(即对于给定的密钥,在这种情况下,下表中的Md5,将没有重叠的时段)。用户需要能够设置EffectiveFrom
和EffectiveTo
日期,因此时态表无用,因为它们似乎只允许系统生成日期。用例是上传批量数据并设置有效日期范围,这需要应用于现有数据,以确保没有时间段重叠。
表定义:
IF OBJECT_ID('dbo.IngestedData', 'U') IS NOT NULL
DROP TABLE IngestedData;
CREATE TABLE IngestedData
(
ID INT IDENTITY(1,1),
Md5 VARCHAR(15) NOT NULL,
EffectiveFrom DATE NOT NULL,
EffectiveTo DATE NOT NULL,
UpdateUser VARCHAR(50),
JsonData VARCHAR(MAX),
CONSTRAINT CK_IngestedData_Start_End CHECK (EffectiveFrom < EffectiveTo),
CONSTRAINT UK_IngestedData_Md5_Start_End UNIQUE(Md5, EffectiveFrom),
PRIMARY KEY (Id)
);
CREATE NONCLUSTERED INDEX AK_IngestedData_Md5
ON IngestedData (Md5);
CREATE NONCLUSTERED INDEX AK_IngestedData_EffectiveFrom
ON IngestedData (EffectiveFrom);
CREATE NONCLUSTERED INDEX AK_IngestedData_EffectiveTo
ON IngestedData (EffectiveTo);
我编写了一个upsert过程,适用于单行更新,如下所示:
Upsert程序:
CREATE PROCEDURE dbo.usp_UpsertIngestedDataRow
@Md5 VARCHAR(20),
@EffectiveFrom DateTime,
@EffectiveTo DateTime,
@UpdateUser VARCHAR(50),
@JsonData VARCHAR(MAX)
AS
BEGIN
SET NOCOUNT ON;
BEGIN TRY;
BEGIN TRANSACTION;
--Select the data that needs to be modified along with the action to be taken
WITH NewRow(ID, Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData, [Action]) AS
(
SELECT NULL, @Md5, @EffectiveFrom, @EffectiveTo, @UpdateUser, @JsonData, 'I'
),
OverlappingRows(ID, Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData) AS
(
SELECT
X.ID, X.Md5, X.EffectiveFrom, X.EffectiveTo, X.UpdateUser, X.JsonData
FROM
NewRow A
JOIN
IngestedData X ON (X.EffectiveFrom < A.EffectiveTo
AND X.EffectiveTo > A.EffectiveFrom)
AND A.Md5 = X.Md5
),
NewStartRows(ID, Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData, [Action]) AS
(
SELECT
s.ID, s.Md5, s.EffectiveFrom,
(SELECT DATEADD(DAY, -1, MIN(EffectiveFrom))
FROM NewRow),
s.UpdateUser, s.JsonData, 'I'
FROM
OverlappingRows s
WHERE
EffectiveFrom < (SELECT MIN(EffectiveFrom) FROM NewRow)
),
NewEndRows(ID, Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData, [Action]) AS
(
SELECT
s.ID, s.Md5,
(SELECT DATEADD(DAY, 1, MIN(EffectiveTo))
FROM NewRow),
s.EffectiveTo, s.UpdateUser, s.JsonData, 'I'
FROM
OverlappingRows s
WHERE
EffectiveTo > (SELECT MAX(EffectiveTo) FROM NewRow)
),
DeleteRows(ID, Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData, [Action]) AS
(
SELECT
del.ID, del.Md5, del.EffectiveFrom, del.EffectiveTo,
del.UpdateUser, del.JsonData, 'D'
FROM
OverlappingRows del
INNER JOIN
NewRow n ON n.EffectiveFrom <= del.EffectiveFrom
AND n.EffectiveTo >= del.EffectiveTo
)
SELECT *
INTO #Temp
FROM
(SELECT * FROM NewRow
UNION
SELECT * FROM NewStartRows
UNION
SELECT * FROM NewEndRows
UNION
SELECT * FROM DeleteRows) AS Data;
--Delete any rows that are being replaced
DELETE FROM IngestedData WHERE ID IN (SELECT DISTINCT ID FROM #Temp)
--Insert the replacement
INSERT INTO IngestedData(Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData)
SELECT Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData
FROM #Temp
WHERE [Action] = 'I'
--Drop temp table
IF OBJECT_ID('tempdb.dbo.#Temp', 'U') IS NOT NULL
DROP TABLE #Temp
COMMIT;
END TRY
BEGIN CATCH
ROLLBACK;
THROW;
END CATCH
END
GO
即使表中填充了10,000,000条记录,单个呼叫性能也很好,呼叫大约需要7毫秒。问题在于进行大量更新。通过游标对35,000条记录执行上述存储过程大约需要5分钟。
我尝试重写过程以获取一个表变量,这将允许DML使用set操作但在逻辑中丢失。任何人都可以帮助将上述逻辑转换为遵循此模式的基于集合的更新:
新存储过程:
CREATE PROCEDURE usp_BulkUpsertIngestedData
@UpdateUser VARCHAR(15),
@NewRows DataIngestionRecord READONLY
AS
BEGIN
类型定义
CREATE TYPE DataIngestionRecord AS TABLE
(
Md5 VARCHAR(15) NOT NULL,
EffectiveFrom DATE NOT NULL,
EffectiveTo DATE NOT NULL,
JsonData VARCHAR(MAX)
)
答案 0 :(得分:1)
在尝试禁用然后重建索引并删除过程中的CTE时,我发现在使用逐行更新时,性能根本没有得到改善。
我采取了另一种策略,并决定通过指定在任何给定的更新中每个唯一的Md5只能应用一个新的时间范围来限制upsert用例。这简化了将存储过程转换为基于集合的操作所需的逻辑(并符合我们的要求)。
我确实接受了@ Tanner的建议并从存储过程中删除了链式CTE。最终的存储过程最终为:
CREATE PROCEDURE dbo.usp_UpsertIngestedDataSet
@NewRows DataIngestionRecord READONLY,
@UpdateUser VARCHAR(15)
AS
BEGIN
SET NOCOUNT ON;
--Ensure that there are not multiple temporal regions in the update data for a given key
SELECT Md5
INTO #Duplicates
FROM @NewRows
GROUP BY Md5
HAVING COUNT(*) > 1;
IF(@@ROWCOUNT > 0) BEGIN
DECLARE @Err VARCHAR(MAX)
SELECT @Err = COALESCE(@Err + CHAR(13), '') + Md5
FROM #Duplicates
ORDER BY Md5;
SET @Err = 'The following Md5 values have multiple temporal ranges in the uploaded data which is not supported: ' + char(13) + @Err;
THROW 50002, @Err, 1;
END
--Determine all overlapping rows from the existing data set
SELECT id.ID, id.Md5, id.EffectiveFrom, id.EffectiveTo, id.UpdateUser, id.JsonData
INTO #OverlappingRecords
FROM IngestedData id JOIN @NewRows nr ON
id.Md5 = nr.Md5 AND
(id.EffectiveFrom < nr.EffectiveTo
AND id.EffectiveTo > nr.EffectiveFrom)
--Calculate truncation of left overlapping rows
SELECT ol.Id,ol.Md5, ol.EffectiveFrom, DATEADD(DAY,-1, nr.EffectiveFrom) AS EffectiveTo, 'U' AS Action
INTO #Changes
FROM #OverlappingRecords ol JOIN @NewRows nr ON
ol.Md5 = nr.Md5
AND ol.EffectiveFrom < nr.EffectiveFrom
--Calculate truncation of right overlapping rows
INSERT INTO #Changes
SELECT ol.ID, ol.Md5, DATEADD(DAY,1,nr.EffectiveTo), ol.EffectiveTo, 'U'
FROM #OverlappingRecords ol JOIN @NewRows nr ON
ol.Md5 = nr.Md5
AND ol.EffectiveTo > nr.EffectiveTo
AND ol.EffectiveFrom > nr.EffectiveFrom;
--If any area overlaps both the left and right of a new region we need a new insert for the right overlap
SELECT ol.ID, ol.Md5, DATEADD(DAY,1,nr.EffectiveTo) AS EffectiveFrom, ol.EffectiveTo, 'I' AS [Action]
INTO #InsertRecords
FROM #OverlappingRecords ol JOIN @NewRows nr ON
ol.Md5 = nr.Md5
AND ol.EffectiveTo > nr.EffectiveTo
AND ol.EffectiveFrom < nr.EffectiveFrom;
BEGIN TRANSACTION;
--Delete all overwritten regions (i.e. existing temporal ranges that are completely replaced by a new range)
DELETE FROM IngestedData
WHERE ID IN (SELECT ol.ID
FROM #OverlappingRecords ol JOIN @NewRows nr ON
ol.Md5 = nr.Md5
AND nr.EffectiveFrom <= ol.EffectiveFrom
AND nr.EffectiveTo >= ol.EffectiveTo);
--Insert New Data (both from uploaded data and from existing region splits)
INSERT INTO IngestedData (Md5, EffectiveFrom, EffectiveTo, UpdateUser, JsonData)
SELECT Md5, EffectiveFrom, EffectiveTo, 'user2', JsonData
FROM @NewRows
UNION
SELECT id.Md5,ir.EffectiveFrom, ir.EffectiveTo,id.UpdateUser,id.JsonData
FROM IngestedData id JOIN #InsertRecords ir
ON id.ID = ir.ID AND ir.[Action] = 'I';
--Update truncated rows
Update id
SET EffectiveFrom = u.EffectiveFrom, EffectiveTo = u.EffectiveTo
FROM IngestedData id JOIN #Changes u ON id.ID = u.ID AND u.[Action] = 'U';
COMMIT;
END
GO
将此代码翻译为基于集合的逻辑有所不同,此版本现在可以在7370毫秒内完成20,000,000个数据的更新,以及1,000,000行数据。