我需要用Python进行一些实时音频信号处理,即通过成帧,加窗和计算FFT来分析频域中的信号,然后根据分析结果应用一些滤波器。我正在使用PyAudio进行音频采集,使用PyQtGraph进行波形和FFT可视化,如this和this code中所述。
现在我的代码只检测具有最高值的N
功率谱区,并通过在FFT图上绘制垂直线来突出显示它们。这是看起来像:
import pyaudio
import numpy as np
from scipy.signal import argrelextrema
import pyqtgraph as pg
from pyqtgraph.Qt import QtCore
##Some settings
FORMAT = pyaudio.paFloat32
CHANNELS = 1
FS = 44100
CHUNK = 256
NFFT = 2048
OVERLAP = 0.5
PLOTSIZE = 32*CHUNK
N = 4
freq_range = np.linspace(10, FS/2, NFFT//2 + 1)
df = FS/NFFT
HOP = NFFT*(1-OVERLAP)
##Some preliminary functions
def db_spectrum(data) : #computes positive frequency power spectrum
fft_input = data*np.hanning(NFFT)
spectrum = abs(np.fft.rfft(fft_input))/NFFT
spectrum[1:-1] *= 2
return 20*np.log10(spectrum)
def highest_peaks(spectrum) : #finds peaks (local maxima) and picks the N highest ones
peak_indices = argrelextrema(spectrum, np.greater)[0]
peak_values = spectrum[peak_indices]
highest_peak_indices = np.argpartition(peak_values, -N)[-N:]
return peak_indices[(highest_peak_indices)]
def detection_plot(peaks) : #formats data for vertical line plotting
x = []
y = []
for peak in peaks :
x.append(peak*df)
x.append(peak*df)
y.append(-200)
y.append(0)
return x, y
##Main class containing loop and UI
class SpectrumAnalyzer(pg.GraphicsWindow) :
def __init__(self) :
super().__init__()
self.initUI()
self.initTimer()
self.initData()
self.pa = pyaudio.PyAudio()
self.stream = self.pa.open(format = FORMAT,
channels = CHANNELS,
rate = FS,
input = True,
output = True,
frames_per_buffer = CHUNK)
def initUI(self) :
self.setWindowTitle("Microphone Audio Data")
audio_plot = self.addPlot(title="Waveform")
audio_plot.showGrid(True, True)
audio_plot.addLegend()
audio_plot.setYRange(-1,1)
self.time_curve = audio_plot.plot()
self.nextRow()
fft_plot = self.addPlot(title="FFT")
fft_plot.showGrid(True, True)
fft_plot.addLegend()
fft_plot.setLogMode(True, False)
fft_plot.setYRange(-140,0) #may be adjusted depending on your input
self.fft_curve = fft_plot.plot(pen='y')
self.detection = fft_plot.plot(pen='r')
def initTimer(self) :
self.timer = QtCore.QTimer()
self.timer.timeout.connect(self.update)
self.timer.start(0)
def initData(self) :
self.waveform_data = np.zeros(PLOTSIZE)
self.fft_data = np.zeros(NFFT)
self.fft_counter = 0
def closeEvent(self, event) :
self.timer.stop()
self.stream.stop_stream()
self.stream.close()
self.pa.terminate()
def update(self) :
raw_data = self.stream.read(CHUNK)
self.stream.write(raw_data, CHUNK)
self.fft_counter += CHUNK
sample_data = np.fromstring(raw_data, dtype=np.float32)
self.waveform_data = np.concatenate([self.waveform_data, sample_data]) #update plot data
self.waveform_data = self.waveform_data[CHUNK:] #
self.time_curve.setData(self.waveform_data)
self.fft_data = np.concatenate([self.fft_data, sample_data]) #update fft input
self.fft_data = self.fft_data[CHUNK:] #
if self.fft_counter == HOP :
spectrum = db_spectrum(self.fft_data)
peaks = highest_peaks(spectrum)
x, y = detection_plot(peaks)
self.detection.setData(x, y, connect = 'pairs')
self.fft_curve.setData(freq_range, spectrum)
self.fft_counter = 0
if __name__ == '__main__':
spec = SpectrumAnalyzer()
代码工作正常但我还有一些问题:
timer.start()
作为参数调用0
,我们会尽快再次调用update
方法。我的脚本如何知道只有在收到下一个音频块时才需要调用update
方法?closeEvent
方法。过去常见的事情是,即使关闭窗口后,也会调用update
方法并录制我的音频。那是正常的行为吗?QtGui.QApplication
实例并调用exec
方法。为什么这样,为什么我的代码工作,即使我没有这样做?N
最高峰要求更高的分析。鉴于我的代码的实际结构,如果我在update
方法中添加这样的分析,我理解CPU必须在接收下一个音频块之前计算所有内容,同时它可以等待下一个FFT输入数据做好准备。跳跃大小大于块大小,这将使CPU有更多时间来计算所有内容。我怎样才能做到这一点?多线程?