使用np.savetxt保存ft.tensor数组 - Python / TensorFlow

时间:2017-10-02 18:13:00

标签: python python-2.7 numpy tensorflow tensor

我创建了这个函数,以便将变量图层的所有值保存在外部文件中:

$ webpack -p --config webpack.config.babel.js

但似乎我的追加功能不起作用,因为当我打开test.txt文件时,只有1层,而不是300个结果。

我的占位符是:

# Counter for total number of iterations performed so far
total_iterations = 0

def test_save(num_iterations):
    # Ensure we update the global variable rather than a local copy
    global total_iterations

    for i in range(total_iterations, total_iterations + num_iterations):

        x_batch, y_true_batch = next_batch_size(train_batch_size)

        feed_dict_train = {x: x_batch, y_true: y_true_batch}

        # Message for printing
        msg = " Iteration: {0:>6}"

        # Print it
        print(msg.format(i + 1))

        test = session.run(layer, feed_dict=feed_dict_train)

        print 'test',test

        store_all = []

        store_all.append(test)

    np.savetxt('test.txt', store_all, fmt='%5s')

# Call function
test_save(300)

我的图层是:

# Placeholder variable for the input images
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')

# Reshape 'x'
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])

# Placeholder variable for the true labels associated with the images
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')

1 个答案:

答案 0 :(得分:1)

您在循环的每次迭代中初始化了一个空列表。把它放在外面:

# Counter for total number of iterations performed so far
total_iterations = 0

def test_save(num_iterations):
    # Ensure we update the global variable rather than a local copy
    global total_iterations

    store_all = []

    for i in range(total_iterations, total_iterations + num_iterations):

        x_batch, y_true_batch = next_batch_size(train_batch_size)

        feed_dict_train = {x: x_batch, y_true: y_true_batch}

        # Message for printing
        msg = " Iteration: {0:>6}"

        # Print it
        print(msg.format(i + 1))

        test = session.run(layer, feed_dict=feed_dict_train)

        print 'test',test

        store_all.append(test)

    np.savetxt('test.txt', store_all, fmt='%5s')

# Call function
test_save(300)