我有一个包含父ID和子ID的Pandas数据帧。我需要帮助构建一个更新的数据框,列出每个父母的每个后代。
为了澄清输出应该是什么样子,这里有一篇帖子dba.stackexchange使用SQL来完成我在python中尝试做的事情。
以下是输入DataFrame的示例:
parent_id child_id
0 3111 4321
1 2010 3102
2 3000 4023
3 1000 2010
4 4023 5321
5 3011 4200
6 3033 4113
7 5010 6525
8 3011 4010
9 3102 4001
10 2010 3011
11 4023 5010
12 2110 3000
13 2100 3033
14 1000 2110
15 5010 6100
16 2110 3111
17 1000 2100
18 5010 6016
19 3033 4311
以下是硬编码为DataFrame的实际示例数据
df = pd.DataFrame(
{
'parent_id': [3111, 2010, 3000, 1000, 4023, 3011, 3033, 5010, 3011, 3102, 2010, 4023, 2110, 2100, 1000, 5010, 2110, 1000, 5010, 3033],
'child_id': [4321, 3102, 4023, 2010, 5321, 4200, 4113, 6525, 4010, 4001, 3011, 5010, 3000, 3033, 2110, 6100, 3111, 2100, 6016, 4311]
}
)
这是我尝试使用递归列表构建策略
parent_list = []
def recurse(parent, child, root_parent):
# initialize on first run of each branch
if root_parent is None:
root_parent = parent
parent_list.append((parent, child))
recurse(parent, child, root_parent)
# for each parent find every child recursively
for index, row in df.iterrows():
if row['parent_id'] is child:
parent_list.append((root_parent, row['child_id']))
recurse(row['parent_id'], row['child_id'], root_parent)
# recurse down each parent branch
for i, r in df.iterrows():
recurse(r['parent_id'], r['child_id'], None)
return parent_list
...目前只是重复数据,因为我没有正确遍历树。
输出格式应遵循输入格式。我想要一个包含父和子ID的两列表,如下面的示例输出所示。
以下是上述数据的预期输出:
parent_id child_id
0 1000 2010
1 1000 2100
2 1000 2110
3 1000 3000
4 1000 3011
5 1000 3033
6 1000 3102
7 1000 3111
8 1000 4001
9 1000 4010
10 1000 4023
11 1000 4113
12 1000 4200
13 1000 4311
14 1000 4321
15 1000 5010
16 1000 5321
17 1000 6016
18 1000 6100
19 1000 6525
20 2010 3011
21 2010 3102
22 2010 4001
23 2010 4010
24 2010 4200
25 2100 3033
26 2100 4113
27 2100 4311
28 2110 3000
29 2110 3111
30 2110 4023
31 2110 4321
32 2110 5010
33 2110 5321
34 2110 6016
35 2110 6100
36 2110 6525
37 3000 4023
38 3000 5010
39 3000 5321
40 3000 6016
41 3000 6100
42 3000 6525
43 3011 4010
44 3011 4200
45 3033 4113
46 3033 4311
47 3102 4001
48 3111 4321
49 4023 5010
50 4023 5321
51 4023 6016
52 4023 6100
53 4023 6525
54 5010 6016
55 5010 6100
56 5010 6525
为每行添加从parent_id
到child_id
的额外深度/距离列的加分点。 TIA
答案 0 :(得分:3)
这应该返回您想要的两列中的父ID和子ID:
import pandas as pd
import numpy as np
import itertools
df = pd.DataFrame(
{
'parent_id': [3111, 2010, 3000, 1000, 4023, 3011, 3033, 5010, 3011, 3102, 2010, 4023, 2110, 2100, 1000, 5010, 2110, 1000, 5010, 3033],
'child_id': [4321, 3102, 4023, 2010, 5321, 4200, 4113, 6525, 4010, 4001, 3011, 5010, 3000, 3033, 2110, 6100, 3111, 2100, 6016, 4311]
}
)
def get_child_list(df, parent_id):
list_of_children = []
list_of_children.append(df[df['parent_id'] == parent_id]['child_id'].values)
for i_, r_ in df[df['parent_id'] == parent_id].iterrows():
if r_['child_id'] != parent_id:
list_of_children.append(get_child_list(df, r_['child_id']))
# to flatten the list
list_of_children = [item for sublist in list_of_children for item in sublist]
return list_of_children
new_df = pd.DataFrame(columns=['parent_id', 'list_of_children'])
for index, row in df.iterrows():
temp_df = pd.DataFrame(columns=['parent_id', 'list_of_children'])
temp_df['list_of_children'] = pd.Series(get_child_list(df, row['parent_id']))
temp_df['parent_id'] = row['parent_id']
new_df = new_df.append(temp_df)
print new_df
答案 1 :(得分:2)
只要您的ID永远没有周期,我认为这应该有效
def get_children(id):
list_of_children = []
def dfs(id):
child_ids = df[df["parent_id"]==id]["child_id"]
if child_ids.empty:
return
for child_id in child_ids:
list_of_children.append(child_id)
dfs(child_id)
dfs(id)
return list_of_children
df["list_of_children"] = df["parent_id"].apply(get_children)
df
返回:
parent_id child_id list_of_children
0 3111 4321 [4321]
1 2010 3102 [3102, 4001, 3011, 4200, 4010]
2 3000 4023 [4023, 5321, 5010, 6525, 6100, 6016]
3 1000 2010 [2010, 3102, 4001, 3011, 4200, 4010, 2110, 3000, 4023, 5321, 5010, 6525, 610...
4 4023 5321 [5321, 5010, 6525, 6100, 6016]
5 3011 4200 [4200, 4010]
6 3033 4113 [4113, 4311]
7 5010 6525 [6525, 6100, 6016]
8 3011 4010 [4200, 4010]
9 3102 4001 [4001]
10 2010 3011 [3102, 4001, 3011, 4200, 4010]
11 4023 5010 [5321, 5010, 6525, 6100, 6016]
12 2110 3000 [3000, 4023, 5321, 5010, 6525, 6100, 6016, 3111, 4321]
13 2100 3033 [3033, 4113, 4311]
14 1000 2110 [2010, 3102, 4001, 3011, 4200, 4010, 2110, 3000, 4023, 5321, 5010, 6525, 610...
15 5010 6100 [6525, 6100, 6016]
16 2110 3111 [3000, 4023, 5321, 5010, 6525, 6100, 6016, 3111, 4321]
17 1000 2100 [2010, 3102, 4001, 3011, 4200, 4010, 2110, 3000, 4023, 5321, 5010, 6525, 610...
18 5010 6016 [6525, 6100, 6016]
19 3033 4311 [4113, 4311]
一个问题是你没有在这里将数据框传递给函数,所以你需要注意你的名字。您可以通过找到一种实现此函数的方法来改进它,而不依赖于名为df existing的数据帧的内部dfs函数。