用ggplot固定填充密度图的不同部分

时间:2017-10-01 20:48:42

标签: r ggplot2

根据rnorm和截止c绘制,我希望我的情节使用以下颜色:

  1. 红色表示-c
  2. 左侧的部分
  3. 蓝色表示-cc
  4. 之间的部分
  5. 和绿色表示c
  6. 右侧的部分

    例如,如果我的数据是:

    set.seed(9782)
    mydata <- rnorm(1000, 0, 2)
    c <- 1
    

    我想绘制这样的事情:

    enter image description here

    但是如果我的数据全部在c的右边,那么整个情节应该是绿色的。同样,如果全部介于-cc之间或-c的左侧,则情节应全部为红色或蓝色。

    这是我写的代码:

    MinD <- min(mydata)
    MaxD <- max(mydata)
    
    df.plot <- data.frame(density = mydata)
    
    if(c==0){
      case <- dplyr::case_when((MinD < 0 & MaxD >0) ~ "L_and_R",
                               (MinD > 0) ~ "R",
                               (MaxD < 0) ~ "L")
    }else{
      case <- dplyr::case_when((MinD < -c & MaxD >c) ~ "ALL",
                               (MinD > -c & MaxD > c) ~ "Center_and_R",
                               (MinD > -c & MaxD <c) ~ "Center",
                               (MinD < -c & MaxD < c) ~ "Center_and_L",
                               MaxD < -c ~ "L",
                               MaxD > c ~ "R")
    }
    
    # Draw the Center
    
    if(case %in% c("ALL", "Center_and_R", "Center", "Center_and_L")){
      ds <- density(df.plot$density, from = -c, to = c)
      ds_data_Center <- data.frame(x = ds$x, y = ds$y, section="Center")
    } else{
      ds_data_Center <- data.frame(x = NA, y = NA, section="Center")
    }
    
    # Draw L
    
    if(case %in% c("ALL", "Center_and_L", "L", "L_and_R")){
      ds <- density(df.plot$density, from = MinD, to = -c)
      ds_data_L <- data.frame(x = ds$x, y = ds$y, section="L")
    } else{
      ds_data_L <- data.frame(x = NA, y = NA, section="L")
    }
    
    # Draw R
    
    if(case %in% c("ALL", "Center_and_R", "R", "L_and_R")){
      ds <- density(df.plot$density, from = c, to = MaxD)
      ds_data_R <- data.frame(x = ds$x, y = ds$y, section="R")
    } else{
      ds_data_R <- data.frame(x = NA, y = NA, section="R")
    }
    
    L_Pr <- round(mean(mydata < -c),2)
    Center_Pr <- round(mean((mydata>-c & mydata<c)),2)
    R_Pr <- round(mean(mydata > c),2)
    
    filldf <- data.frame(section = c("L", "Center", "R"), 
                         Pr = c(L_Pr, Center_Pr, R_Pr), 
                         fill = c("red", "blue", "green")) %>% 
      dplyr::mutate(section = as.character(section))
    
    
    if(c==0){
      ds_data <- suppressWarnings(dplyr::bind_rows(ds_data_L, ds_data_R)) %>% 
        dplyr::full_join(filldf, by = "section") %>% filter(Pr!=0) %>% 
        dplyr::full_join(filldf, by = "section") %>% mutate(section = ordered(section, levels=c("L","R"))) 
      ds_data <- ds_data[order(ds_data$section), ] %>%  
        filter(Pr!=0) %>% 
        mutate(Pr=scales::percent(Pr))
    }else{
      ds_data <- suppressWarnings(dplyr::bind_rows(ds_data_Center, ds_data_L, ds_data_R)) %>% 
        dplyr::full_join(filldf, by = "section") %>% mutate(section = ordered(section, levels=c("L","Center","R"))) 
      ds_data <- ds_data[order(ds_data$section), ] %>%  
        filter(Pr!=0) %>% 
        mutate(Pr=scales::percent(Pr))
    }
    
    fillScale <- scale_fill_manual(name = paste0("c = ", c, ":"),
                                   values = as.character(unique(ds_data$fill)))
    
    p <- ggplot(data = ds_data, aes(x=x, y=y, fill=Pr)) + 
      geom_area() + fillScale 
    

    唉,我无法弄清楚如何将颜色分配给不同的部分,同时将百分比保持为颜色的标签。

1 个答案:

答案 0 :(得分:2)

我们使用density函数创建我们实际绘制的数据框。然后,我们使用cut函数使用数据值的范围创建组。最后,我们计算每个组的概率质量,并将它们用作实际的图例标签。

我们还创建了一个带标签的颜色矢量,以确保相同的颜色始终与给定的x值范围相关,无论数据是否包含给定x值范围内的任何值。

下面的代码将所有这些打包成一个函数。

library(tidyverse)
library(gridExtra)

fill_density = function(x, cc=1, adj=1, drop_levs=FALSE) {

  # Calculate density values for input data
  dens = data.frame(density(x, n=2^10, adjust=adj)[c("x","y")]) %>% 
    mutate(section = cut(x, breaks=c(-Inf, -1, cc, Inf))) %>% 
    group_by(section) %>% 
    mutate(prob = paste0(round(sum(y)*mean(diff(x))*100),"%"))

  # Get probability mass for each level of section
  # We'll use these as the label values in scale_fill_manual
  sp = dens %>% 
    group_by(section, prob) %>% 
    summarise %>% 
    ungroup

  if(!drop_levs) {
   sp = sp %>% complete(section, fill=list(prob="0%"))
  }

  # Assign colors to each level of section
  col = setNames(c("red","blue","green"), levels(dens$section))

  ggplot(dens, aes(x, y, fill=section)) +
    geom_area() +
    scale_fill_manual(labels=sp$prob, values=col, drop=drop_levs) +
    labs(fill="")
}

现在让我们在几个不同的数据发行版上运行该函数:

set.seed(3)
dat2 = rnorm(1000)
grid.arrange(fill_density(mydata), fill_density(mydata[mydata>0]),
             fill_density(mydata[mydata>2], drop_levs=TRUE), 
              fill_density(mydata[mydata>2], drop_levs=FALSE),
             fill_density(mydata[mydata < -5 | mydata > 5], adj=0.3), fill_density(dat2),
             ncol=2)

enter image description here