在递归DFS中,我们可以通过将节点着色为WHITE
,GRAY
和BLACK
来检测周期,如解释here。
如果在DFS搜索期间遇到GRAY
节点,则存在循环。
我的问题是:在DFS的这个迭代版本中,我何时将节点标记为GRAY
和BLACK
? (来自维基百科)
1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in G.adjacentEdges(v) do
9 S.push(w)
答案 0 :(得分:4)
如果您正在输入或退出信息,则可以选择将每个节点两次推送到堆栈。从堆栈中弹出节点时,检查是否正在进入或退出。如果输入颜色为灰色,请将其再次叠加并前往邻居。如果退出,只需将其着色为黑色。
这是一个简短的Python演示,它在一个简单的图中检测一个循环:
from collections import defaultdict
WHITE = 0
GRAY = 1
BLACK = 2
EDGES = [(0, 1), (1, 2), (0, 2), (2, 3), (3, 0)]
ENTER = 0
EXIT = 1
def create_graph(edges):
graph = defaultdict(list)
for x, y in edges:
graph[x].append(y)
return graph
def dfs_iter(graph, start):
state = {v: WHITE for v in graph}
stack = [(ENTER, start)]
while stack:
act, v = stack.pop()
if act == EXIT:
print('Exit', v)
state[v] = BLACK
else:
print('Enter', v)
state[v] = GRAY
stack.append((EXIT, v))
for n in graph[v]:
if state[n] == GRAY:
print('Found cycle at', n)
elif state[n] == WHITE:
stack.append((ENTER, n))
graph = create_graph(EDGES)
dfs_iter(graph, 0)
输出:
Enter 0
Enter 2
Enter 3
Found cycle at 0
Exit 3
Exit 2
Enter 1
Exit 1
Exit 0
答案 1 :(得分:4)
您可以简单地通过不立即弹出堆栈元素来做到这一点。
对于每次迭代,请执行v = stack.peek()
,如果v
为White
,请将其标记为Grey
,然后继续探索其邻居。
但是,如果v
是灰色,则表示您在堆栈中第二次遇到v
,并且已经完成了探索。将其标记为Black
,然后继续循环。
这是修改后的代码的样子:
procedure DFS-iterative(G,v):
let S be a stack
S.push(v)
while S is not empty
v = S.peek()
if v is not labeled as Grey:
label v as Grey
for all edges from v to w in G.adjacentEdges(v) do
if w is labeled White do
S.push(w)
elif w is labeled Grey do
return False # Cycle detected
# if w is black, it's already explored so ignore
elif v is labeled as Grey:
S.pop() # Remove the stack element as it has been explored
label v as Black
如果您使用visited
列表标记所有访问过的节点,并使用另一个recStack
标记跟踪当前正在探索的节点的列表,那么您可以做的就是,而不是弹出元素,只需执行stack.peek()
。如果未访问该元素(这意味着您是第一次在堆栈中遇到该元素),只需在True
和visited
中将其标记为recStack
并探索其子元素。 / p>
但是,如果peek()
值已经被访问,则意味着您正在结束对该节点的探索,因此只需将其弹出并再次将其recStack
设置为False。
答案 2 :(得分:1)
我已解决此问题,作为此Leetcode问题的解决方案-https://leetcode.com/problems/course-schedule/
我已经用Java实现了它-使用带有颜色的递归DFS,使用访问数组的递归DFS,使用indegree并计算拓扑排序的迭代DFS和BFS。
class Solution {
//prereq is the edges and numCourses is number of vertices
public boolean canFinish(int numCourses, int[][] prereq) {
//0 -> White, -1 -> Gray, 1 -> Black
int [] colors = new int[numCourses];
boolean [] v = new boolean[numCourses];
int [] inDegree = new int[numCourses];
Map<Integer, List<Integer>> alMap = new HashMap<>();
for(int i = 0; i < prereq.length; i++){
int s = prereq[i][0];
int d = prereq[i][1];
alMap.putIfAbsent(s, new ArrayList<>());
alMap.get(s).add(d);
inDegree[d]++;
}
// if(hasCycleBFS(alMap, numCourses, inDegree)){
// return false;
// }
for(int i = 0; i < numCourses; i++){
if(hasCycleDFS1(i, alMap, colors)){
// if(hasCycleDFS2(i, alMap, v)){
//if(hasCycleDFSIterative(i, alMap, colors)){
return false;
}
}
return true;
}
//12.48
boolean hasCycleBFS(Map<Integer, List<Integer>> alMap, int numCourses, int [] inDegree){
//short [] v = new short[numCourses];
Deque<Integer> q = new ArrayDeque<>();
for(int i = 0; i < numCourses; i++){
if(inDegree[i] == 0){
q.offer(i);
}
}
List<Integer> tSortList = new ArrayList<>();
while(!q.isEmpty()){
int cur = q.poll();
tSortList.add(cur);
//System.out.println("cur = " + cur);
if(alMap.containsKey(cur)){
for(Integer d: alMap.get(cur)){
//System.out.println("d = " + d);
// if(v[d] == true){
// return true;
// }
inDegree[d]--;
if(inDegree[d] == 0){
q.offer(d);
}
}
}
}
return tSortList.size() == numCourses? false: true;
}
// inspired from - https://leetcode.com/problems/course-schedule/discuss/58730/Explained-Java-12ms-Iterative-DFS-solution-based-on-DFS-algorithm-in-CLRS
//0 -> White, -1 -> Gray, 1 -> Black
boolean hasCycleDFSIterative(int s, Map<Integer, List<Integer>> alMap, int [] colors){
Deque<Integer> stack = new ArrayDeque<>();
stack.push(s);
while(!stack.isEmpty()){
int cur = stack.peek();
if(colors[cur] == 0){
colors[cur] = -1;
if(alMap.containsKey(cur)){
for(Integer d: alMap.get(cur)){
if(colors[d] == -1){
return true;
}
if(colors[d] == 0){
stack.push(d);
}
}
}
}else if (colors[cur] == -1 || colors[cur] == 1){
colors[cur] = 1;
stack.pop();
}
}
return false;
}
boolean hasCycleDFS1(int s, Map<Integer, List<Integer>> alMap, int [] colors){
// if(v[s] == true){
// return true;
// }
colors[s] = -1;
if(alMap.containsKey(s)){
for(Integer d: alMap.get(s)){
//grey vertex
if(colors[d] == -1){
return true;
}
if(colors[d] == 0 && hasCycleDFS1(d, alMap, colors)){
return true;
}
}
}
colors[s] = 1;
return false;
}
// not efficient because we process black vertices again
boolean hasCycleDFS2(int s, Map<Integer, List<Integer>> alMap, boolean [] v){
// if(v[s] == true){
// return true;
// }
v[s] = true;
if(alMap.containsKey(s)){
for(Integer d: alMap.get(s)){
if(v[d] == true || hasCycleDFS2(d, alMap, v)){
return true;
}
}
}
v[s] = false;
return false;
}
}
答案 3 :(得分:0)