如何获得列表元素的所有可能组合?

时间:2009-01-21 11:13:40

标签: python combinations

我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我发现some code(通过谷歌搜索)显然正在寻找我正在寻找的东西,但我发现代码相当不透明并且对使用它很谨慎。另外我觉得必须有一个更优雅的解决方案。

我唯一想到的就是循环遍历十进制整数1-32768并将它们转换为二进制,并使用二进制表示作为过滤器来选择适当的数字。

有谁知道更好的方法?使用map(),也许?

30 个答案:

答案 0 :(得分:550)

This answer错过了一个方面:OP要求所有组合...而不仅仅是长度为“r”的组合。

所以你要么必须遍历所有长度“L”:

import itertools

stuff = [1, 2, 3]
for L in range(0, len(stuff)+1):
    for subset in itertools.combinations(stuff, L):
        print(subset)

或者 - 如果你想变得时髦(或者在你之后弯曲你的代码的大脑) - 你可以生成“combination()”生成器链,并迭代:

from itertools import chain, combinations
def all_subsets(ss):
    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))

for subset in all_subsets(stuff):
    print(subset)

答案 1 :(得分:357)

查看itertools.combinations

itertools.combinations(iterable, r)
     

返回元素的r长度子序列   输入可迭代。

     

组合以字典排序顺序发出。所以,如果   输入iterable被排序,   组合元组将在   排序顺序。

自2.6以来,包括电池!

答案 2 :(得分:43)

这是一个懒惰的单行,也使用itertools:

from itertools import compress, product

def combinations(items):
    return ( set(compress(items,mask)) for mask in product(*[[0,1]]*len(items)) )
    # alternative:                      ...in product([0,1], repeat=len(items)) )

这个答案背后的主要思想:有2 ^ N个组合 - 与长度为N的二进制字符串的数量相同。对于每个二进制字符串,您选择对应于“1”的所有元素。

items=abc * mask=###
 |
 V
000 -> 
001 ->   c
010 ->  b
011 ->  bc
100 -> a
101 -> a c
110 -> ab
111 -> abc

需要考虑的事项:

  • 这要求您可以在len(...)上致电items(解决方法:如果items类似于像生成器一样的迭代,请先使用items=list(_itemsArg)将其转换为列表)
  • 这要求items上的迭代顺序不是随机的(解决方法:不要疯狂)
  • 这要求项目是唯一的,否则{2,2,1}{2,1,1}都会折叠为{2,1}(解决方法:使用collections.Counter作为{的替代品{1}};它基本上是一个多集...但如果你需要它可以使用set,你可能需要稍后使用{}}

<强>演示

tuple(sorted(Counter(...).elements()))

答案 3 :(得分:39)

在@Dan H高度评价answer的评论中,提到itertools documentation中的powerset()食谱 - 包括Dan himself之一。 然而,到目前为止还没有人发布它作为答案。因为它可能是解决问题的最佳方法之一 - 并且从另一位评论者那里得到little encouragement,如下所示。该函数生成所有长度的列表元素的所有唯一组合(包括那些包含零和所有元素的列表元素)。

注意:如果略有不同,目标是仅获取唯一元素的组合,请将行s = list(iterable)更改为s = list(set(iterable))以消除任何重复元素。无论如何,iterable最终变为list的事实意味着它将与生成器一起工作(与其他几个答案不同)。

from itertools import chain, combinations

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [1, 2, 3]
for i, combo in enumerate(powerset(stuff), 1):
    print('combo #{}: {}'.format(i, combo))

输出:

combo #1: ()
combo #2: (1,)
combo #3: (2,)
combo #4: (3,)
combo #5: (1, 2)
combo #6: (1, 3)
combo #7: (2, 3)
combo #8: (1, 2, 3)

答案 4 :(得分:30)

这是一个使用递归:

>>> import copy
>>> def combinations(target,data):
...     for i in range(len(data)):
...         new_target = copy.copy(target)
...         new_data = copy.copy(data)
...         new_target.append(data[i])
...         new_data = data[i+1:]
...         print new_target
...         combinations(new_target,
...                      new_data)
...                      
... 
>>> target = []
>>> data = ['a','b','c','d']
>>> 
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']

答案 5 :(得分:27)

如果原始列表/集包含0个不同的元素,则此单行为您提供所有组合(nn项之间的组合)并使用本机方法{{3} }:

Python 2

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])

Python 3

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])

输出将是:

[[],
 ['a'],
 ['b'],
 ['c'],
 ['d'],
 ['a', 'b'],
 ['a', 'c'],
 ['a', 'd'],
 ['b', 'c'],
 ['b', 'd'],
 ['c', 'd'],
 ['a', 'b', 'c'],
 ['a', 'b', 'd'],
 ['a', 'c', 'd'],
 ['b', 'c', 'd'],
 ['a', 'b', 'c', 'd']]

在线试用:

itertools.combinations

答案 6 :(得分:21)

我同意Dan H的观点,Ben确实要求所有组合。 itertools.combinations()并未提供所有组合。

另一个问题是,如果输入可迭代很大,那么返回生成器而不是列表中的所有内容可能会更好:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb

答案 7 :(得分:14)

您可以使用这个简单的代码

在python中生成列表的所有组合
import itertools

a = [1,2,3,4]
for i in xrange(0,len(a)+1):
   print list(itertools.combinations(a,i))

结果将是:

[()]
[(1,), (2,), (3,), (4,)]
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
[(1, 2, 3, 4)]

答案 8 :(得分:8)

我想我会为那些寻求答案的人添加这个功能,而无需导入itertools或任何其他额外的库。

def powerSet(items):
    """
    Power set generator: get all possible combinations of a list’s elements

    Input:
        items is a list
    Output:
        returns 2**n combination lists one at a time using a generator 

    Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
    """

    N = len(items)
    # enumerate the 2**N possible combinations
    for i in range(2**N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

简单的产量生成器用法:

for i in powerSet([1,2,3,4]):
    print (i, ", ",  end="")

以上用法示例的输出:

  

[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3],[4],   [1,4],[2,4],[1,2,4],[3,4],[1,3,4],[2,3,4],[1,2],   3,4],

答案 9 :(得分:6)

您还可以使用优质的powerset软件包中的more_itertools功能。

from more_itertools import powerset

l = [1,2,3]
list(powerset(l))

# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

我们还可以验证它是否符合OP的要求

from more_itertools import ilen

assert ilen(powerset(range(15))) == 32_768

答案 10 :(得分:5)

3个功能:

  1. n个元素列表的所有组合
  2. n个元素的所有组合列出了顺序不明确的
  3. 所有排列
import sys

def permutations(a):
    return combinations(a, len(a))

def combinations(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinations(a[:i] + a[i+1:], n-1):
                yield [a[i]] + x

def combinationsNoOrder(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinationsNoOrder(a[:i], n-1):
                yield [a[i]] + x

if __name__ == "__main__":
    for s in combinations(list(map(int, sys.argv[2:])), int(sys.argv[1])):
        print(s)

答案 11 :(得分:5)

可以使用itertools

完成

用于排列

此方法将列表作为输入,并以列表形式返回包含长度L的排列的元组的对象列表。

# A Python program to print all  
# permutations of given length 
from itertools import permutations 

# Get all permutations of length 2 
# and length 2 
perm = permutations([1, 2, 3], 2) 

# Print the obtained permutations 
for i in list(perm): 
    print (i) 

组合

此方法将一个列表和一个输入r作为输入,并返回一个元组的对象列表,该元组包含以列表形式包含长度r的所有可能组合。

# A Python program to print all  
# combinations of given length 
from itertools import combinations 

# Get all combinations of [1, 2, 3] 
# and length 2 
comb = combinations([1, 2, 3], 2) 

# Print the obtained combinations 
for i in list(comb): 
    print (i) 

请参阅this

答案 12 :(得分:5)

这是另一个解决方案(单行),涉及使用itertools.combinations函数,但这里我们使用双列表理解(而不是for循环或求和):

def combs(x):
    return [c for i in range(len(x)+1) for c in combinations(x,i)]

演示:

>>> combs([1,2,3,4])
[(), 
 (1,), (2,), (3,), (4,), 
 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), 
 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), 
 (1, 2, 3, 4)]

答案 13 :(得分:4)

以下是“标准递归答案”,类似于其他类似答案https://stackoverflow.com/a/23743696/711085。 (我们实际上不必担心耗尽堆栈空间,因为我们无法处理所有N!排列。)

它依次访问每个元素,然后接受或离开它(我们可以直接从这个算法中看到2 ^ N基数)。

def combs(xs, i=0):
    if i==len(xs):
        yield ()
        return
    for c in combs(xs,i+1):
        yield c
        yield c+(xs[i],)

演示:

>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]

>>> list(sorted( combs(range(5)), key=len))
[(), 
 (0,), (1,), (2,), (3,), (4,), 
 (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3), 
 (2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2), 
 (3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1), 
 (4, 3, 2, 1, 0)]

>>> len(set(combs(range(5))))
32

答案 14 :(得分:3)

这是一种可以轻松地转移到支持递归的所有编程语言的方法(没有迭代器,没有收益,没有列表理解)

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]

答案 15 :(得分:2)

没有 itertools在Python 3中,您可以执行以下操作:

def combinations(arr, carry):
    for i in range(len(arr)):
        yield carry + arr[i]
        yield from combinations(arr[i + 1:], carry + arr[i])

最初为carry = "".

答案 16 :(得分:2)

我知道使用itertools获取所有组合更加实用,但是你可以实现这一点,如果你这样做只有列表理解碰巧欲望,授予你想要编码很多

对于两对的组合:

    lambda l: [(a, b) for i, a in enumerate(l) for b in l[i+1:]]


而且,对于三对的组合,它就像这样简单:

    lambda l: [(a, b, c) for i, a in enumerate(l) for ii, b in enumerate(l[i+1:]) for c in l[i+ii+2:]]

<小时/> 结果与使用itertools.combinations相同:

import itertools
combs_3 = lambda l: [
    (a, b, c) for i, a in enumerate(l) 
    for ii, b in enumerate(l[i+1:]) 
    for c in l[i+ii+2:]
]
data = ((1, 2), 5, "a", None)
print("A:", list(itertools.combinations(data, 3)))
print("B:", combs_3(data))
# A: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
# B: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]

答案 17 :(得分:2)

来自itertools的组合

import itertools
col_names = ["aa","bb", "cc", "dd"]
all_combinations = itertools.chain(*[itertools.combinations(col_names,i+1) for i,_ in enumerate(col_names)])
print(list(all_combinations))

由于

答案 18 :(得分:2)

这个怎么样..使用了一个字符串而不是列表,但同样的事情..字符串可以像Python中的列表一样对待:

def comb(s, res):
    if not s: return
    res.add(s)
    for i in range(0, len(s)):
        t = s[0:i] + s[i + 1:]
        comb(t, res)

res = set()
comb('game', res) 

print(res)

答案 19 :(得分:2)

以下是itertools.combinations

的两种实现方式

返回列表

def combinations(lst, depth, start=0, items=[]):
    if depth <= 0:
        return [items]
    out = []
    for i in range(start, len(lst)):
        out += combinations(lst, depth - 1, i + 1, items + [lst[i]])
    return out

一个返回一个生成器

def combinations(lst, depth, start=0, prepend=[]):
    if depth <= 0:
        yield prepend
    else:
        for i in range(start, len(lst)):
            for c in combinations(lst, depth - 1, i + 1, prepend + [lst[i]]):
                yield c

请注意,建议为这些人提供帮助函数,因为prepend参数是静态的,并且不会随每次调用而改变

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

# get a hold of prepend
prepend = [c for c in combinations([], -1)][0]
prepend.append(None)

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[None, 1, 2, 3], [None, 1, 2, 4], [None, 1, 3, 4], [None, 2, 3, 4]]

这是一个非常肤浅的案例,但最好是安全而不是抱歉

答案 20 :(得分:2)

不使用itertools:

def combine(inp):
    return combine_helper(inp, [], [])


def combine_helper(inp, temp, ans):
    for i in range(len(inp)):
        current = inp[i]
        remaining = inp[i + 1:]
        temp.append(current)
        ans.append(tuple(temp))
        combine_helper(remaining, temp, ans)
        temp.pop()
    return ans


print(combine(['a', 'b', 'c', 'd']))

答案 21 :(得分:2)

此代码采用带嵌套列表的简单算法......

# FUNCTION getCombos: To generate all combos of an input list, consider the following sets of nested lists...
#
#           [ [ [] ] ]
#           [ [ [] ], [ [A] ] ]
#           [ [ [] ], [ [A],[B] ],         [ [A,B] ] ]
#           [ [ [] ], [ [A],[B],[C] ],     [ [A,B],[A,C],[B,C] ],                   [ [A,B,C] ] ]
#           [ [ [] ], [ [A],[B],[C],[D] ], [ [A,B],[A,C],[B,C],[A,D],[B,D],[C,D] ], [ [A,B,C],[A,B,D],[A,C,D],[B,C,D] ], [ [A,B,C,D] ] ]
#
#  There is a set of lists for each number of items that will occur in a combo (including an empty set).
#  For each additional item, begin at the back of the list by adding an empty list, then taking the set of
#  lists in the previous column (e.g., in the last list, for sets of 3 items you take the existing set of
#  3-item lists and append to it additional lists created by appending the item (4) to the lists in the
#  next smallest item count set. In this case, for the three sets of 2-items in the previous list. Repeat
#  for each set of lists back to the initial list containing just the empty list.
#

def getCombos(listIn = ['A','B','C','D','E','F'] ):
    listCombos = [ [ [] ] ]     # list of lists of combos, seeded with a list containing only the empty list
    listSimple = []             # list to contain the final returned list of items (e.g., characters)

    for item in listIn:
        listCombos.append([])   # append an emtpy list to the end for each new item added
        for index in xrange(len(listCombos)-1, 0, -1):  # set the index range to work through the list
            for listPrev in listCombos[index-1]:        # retrieve the lists from the previous column
                listCur = listPrev[:]                   # create a new temporary list object to update
                listCur.append(item)                    # add the item to the previous list to make it current
                listCombos[index].append(listCur)       # list length and append it to the current list

                itemCombo = ''                          # Create a str to concatenate list items into a str
                for item in listCur:                    # concatenate the members of the lists to create
                    itemCombo += item                   # create a string of items
                listSimple.append(itemCombo)            # add to the final output list

    return [listSimple, listCombos]
# END getCombos()

答案 22 :(得分:1)

这是我的实施

    def get_combinations(list_of_things):
    """gets every combination of things in a list returned as a list of lists

    Should be read : add all combinations of a certain size to the end of a list for every possible size in the
    the list_of_things.

    """
    list_of_combinations = [list(combinations_of_a_certain_size)
                            for possible_size_of_combinations in range(1,  len(list_of_things))
                            for combinations_of_a_certain_size in itertools.combinations(list_of_things,
                                                                                         possible_size_of_combinations)]
    return list_of_combinations

答案 23 :(得分:1)

from itertools import permutations, combinations


features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
    oc = combinations(features, i + 1)
    for c in oc:
        tmp.append(list(c))

输出

[
 ['A'],
 ['B'],
 ['C'],
 ['A', 'B'],
 ['A', 'C'],
 ['B', 'C'],
 ['A', 'B', 'C']
]

答案 24 :(得分:1)

使用列表理解:

def selfCombine( list2Combine, length ):
    listCombined = str( ['list2Combine[i' + str( i ) + ']' for i in range( length )] ).replace( "'", '' ) \
                     + 'for i0 in range(len( list2Combine ) )'
    if length > 1:
        listCombined += str( [' for i' + str( i ) + ' in range( i' + str( i - 1 ) + ', len( list2Combine ) )' for i in range( 1, length )] )\
            .replace( "', '", ' ' )\
            .replace( "['", '' )\
            .replace( "']", '' )

    listCombined = '[' + listCombined + ']'
    listCombined = eval( listCombined )

    return listCombined

list2Combine = ['A', 'B', 'C']
listCombined = selfCombine( list2Combine, 2 )

输出将是:

['A', 'A']
['A', 'B']
['A', 'C']
['B', 'B']
['B', 'C']
['C', 'C']

答案 25 :(得分:0)

如果有人正在寻找一个反向列表,就像我一样:

stuff = [1, 2, 3, 4]

def reverse(bla, y):
    for subset in itertools.combinations(bla, len(bla)-y):
        print list(subset)
    if y != len(bla):
        y += 1
        reverse(bla, y)

reverse(stuff, 1)

答案 26 :(得分:0)

def combinations(iterable, r):
# combinations('ABCD', 2) --> AB AC AD BC BD CD
# combinations(range(4), 3) --> 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
    return
indices = range(r)
yield tuple(pool[i] for i in indices)
while True:
    for i in reversed(range(r)):
        if indices[i] != i + n - r:
            break
    else:
        return
    indices[i] += 1
    for j in range(i+1, r):
        indices[j] = indices[j-1] + 1
    yield tuple(pool[i] for i in indices)


x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
    print i

答案 27 :(得分:0)

我参加聚会很晚,但想分享我在同一问题上发现的解决方案: 具体来说,我想进行顺序组合,因此对于“ STAR”,我想要“ STAR”,“ TA”,“ AR”,而不是“ SR”。

lst = [S, T, A, R]
lstCombos = []
for Length in range(0,len(lst)+1):
    for i in lst:
        lstCombos.append(lst[lst.index(i):lst.index(i)+Length])

如果在最后一行之前添加其他内容,则可以过滤重复项:

lst = [S, T, A, R]
lstCombos = []
for Length in range(0,len(lst)+1):
    for i in lst:
         if not lst[lst.index(i):lst.index(i)+Length]) in lstCombos:
             lstCombos.append(lst[lst.index(i):lst.index(i)+Length])

如果由于某种原因在输出中返回了空白列表,这对我来说是偶然的,我添加:

for subList in lstCombos:
    if subList = '':
         lstCombos.remove(subList)

答案 28 :(得分:0)

如果您不想使用组合库,这里是解决方案:

nums = [1,2,3]
p = [[]]
fnl = [[],nums]

for i in range(len(nums)):
    for j in range(i+1,len(nums)):
        p[-1].append([i,j])

for i in range(len(nums)-3):
    p.append([])
    for m in p[-2]:
        p[-1].append(m+[m[-1]+1])

for i in p:
    for j in i:
        n = []
        for m in j:
            if m < len(nums):
                n.append(nums[m])
        if n not in fnl:
            fnl.append(n)

for i in nums:
    if [i] not in fnl:
        fnl.append([i])

print(fnl)

输出:

[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]

答案 29 :(得分:-1)

flag = 0
requiredCals =12
from itertools import chain, combinations

def powerset(iterable):
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [2,9,5,1,6]
for i, combo in enumerate(powerset(stuff), 1):
    if(len(combo)>0):
        #print(combo , sum(combo))
        if(sum(combo)== requiredCals):
            flag = 1
            break
if(flag==1):
    print('True')
else:
    print('else')