这里完全崩溃,需要一些帮助。
我有一个带有+ 10米行的DataFrame和带有两个ID的大约150列,如下所示:
df = pd.DataFrame({'id1' : [1,2,5,3,6,4]
,'id2' : [2,1,np.nan,4,np.nan,3]
,'num' : [123, 3231, 123, 231, 6534,2394]})
id1 id2 num
0 1 2.0 123
1 2 1.0 3231
2 5 NaN 123
3 3 4.0 231
4 6 NaN 6534
5 4 3.0 2394
其中行索引0和1是给定id1和id2的对,行索引3和5是相同方式的一对。我想要下面的表格,其中第二行对与第一行对合并
df = pd.DataFrame({'id1' : [1,5,3,6]
,'id2' : [2,np.nan,3,np.nan]
,'num' : [123, 123, 231, 6534]
,'2num' : [3231, np.nan, 2394, np.nan,]})
id1 id2 num 2_num
0 1 2.0 123 3231.0
1 5 NaN 123 NaN
2 3 3.0 231 2394.0
3 6 NaN 6534 NaN
如何使用id1和id2存档并将“id row 2”中的所有后续列标记为“2 _”?
答案 0 :(得分:3)
这是一个基于合并的方法,(谢谢@pirSquared改进)。即
ndf = df.merge(df, 'left', left_on=['id1', 'id2'], right_on=['id2', 'id1'], suffixes=['', '_2']).drop(['id1_2', 'id2_2'], 1)
cols = ['id1','id2']
ndf[cols] = np.sort(ndf[cols],1)
new = ndf.drop_duplicates(subset=['id1','id2'],keep='first')
id1 id2 num num_2 0 1.0 2.0 123 3231.0 2 5.0 NaN 123 NaN 3 3.0 4.0 231 2394.0 4 6.0 NaN 6534 NaN
答案 1 :(得分:2)
我们的想法是对每对id进行排序,以便我们将它们分组。
cols = ['id1', 'id2']
df[cols] = np.sort(df[cols], 1)
df.set_index(
cols + [df.fillna(-1).groupby(cols).cumcount() + 1]
).num.unstack().add_suffix('_num').reset_index()
id1 id2 1_num 2_num
0 1.0 2.0 123.0 3231.0
1 3.0 4.0 231.0 2394.0
2 5.0 NaN 123.0 NaN
3 6.0 NaN 6534.0 NaN
答案 2 :(得分:1)
使用:
df[['id1','id2']] = pd.DataFrame(np.sort(df[['id1','id2']].values, axis=1)).fillna('tmp')
print (df)
id1 id2 num
0 1.0 2 123
1 1.0 2 3231
2 5.0 tmp 123
3 3.0 4 231
4 6.0 tmp 6534
5 3.0 4 2394
df1 = df.groupby(['id1','id2'])['num'].apply(list)
print (df1)
id1 id2
1.0 2.0 [123, 3231]
3.0 4.0 [231, 2394]
5.0 tmp [123]
6.0 tmp [6534]
Name: num, dtype: object
df2 = pd.DataFrame(df1.values.tolist(),
index=df1.index,
columns=['num','2_num'])
.reset_index().replace('tmp', np.nan)
print (df2)
id1 id2 num 2_num
0 1.0 2.0 123 3231.0
1 3.0 4.0 231 2394.0
2 5.0 NaN 123 NaN
3 6.0 NaN 6534 NaN