我有这个代码适用于二进制分类。我已经为keras imdb数据集测试了它。
model = Sequential()
model.add(Embedding(5000, 32, input_length=500))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(X_train, y_train, epochs=3, batch_size=64)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
我需要将上面的代码转换为多类别分类,总共有7个类别。在阅读了几篇文章以转换上面的代码之后,我理解了什么,我必须改变
model.add(Dense(7, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
显然,改变两行以上是行不通的。我还需要做些什么来使代码适用于多类分类。此外,我认为我必须将类更改为一个热编码,但不知道如何在keras中。
答案 0 :(得分:5)
是的,您需要一个热门目标,您可以使用to_categorical
对目标进行编码或进行短路:
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
这是完整的代码:
from keras.models import Sequential
from keras.layers import *
model = Sequential()
model.add(Embedding(5000, 32, input_length=500))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(7, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
<强>摘要强>
Using TensorFlow backend.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 500, 32) 160000
_________________________________________________________________
lstm_1 (LSTM) (None, 100) 53200
_________________________________________________________________
dense_1 (Dense) (None, 7) 707
=================================================================
Total params: 213,907
Trainable params: 213,907
Non-trainable params: 0
_________________________________________________________________