我正在构建一个word2vec模型如下。
from gensim.models import word2vec, Phrases
documents = ["the mayor of new york was there", "human computer interaction and machine learning has now become a trending research area","human computer interaction is interesting","human computer interaction is a pretty interesting subject", "human computer interaction is a great and new subject", "machine learning can be useful sometimes","new york mayor was present", "I love machine learning because it is a new subject area", "human computer interaction helps people to get user friendly applications"]
sentence_stream = [doc.split(" ") for doc in documents]
bigram = Phrases(sentence_stream, min_count=1, delimiter=b' ')
trigram = Phrases(bigram[sentence_stream], min_count=1, delimiter=b' ')
for sent in sentence_stream:
bigrams_ = bigram[sent]
trigrams_ = trigram[bigram[sent]]
print(bigrams_)
print(trigrams_)
# Set values for various parameters
num_features = 10 # Word vector dimensionality
min_word_count = 1 # Minimum word count
num_workers = 4 # Number of threads to run in parallel
context = 5 # Context window size
downsampling = 1e-3 # Downsample setting for frequent words
model = word2vec.Word2Vec(trigrams_, workers=num_workers, \
size=num_features, min_count = min_word_count, \
window = context, sample = downsampling)
vocab = list(model.wv.vocab.keys())
print(vocab[:10])
然而,我得到的模型词汇的输出是单个字符,如下所示。
['h', 'u', 'm', 'a', 'n', ' ', 'c', 'o', 'p', 't']
我正确地得到了双胞胎和三卦。因此,我只是把代码弄错了。请告诉我这是什么问题?
答案 0 :(得分:3)
这解决了我的问题。我应该将列表列表传递给word2vec模型,如下所示。
trigram_sentences_project = []
bigram = Phrases(sentence_stream, min_count=1, delimiter=b' ')
trigram = Phrases(bigram[sentence_stream], min_count=1, delimiter=b' ')
for sent in sentence_stream:
#bigrams_ = [b for b in bigram[sent] if b.count(' ') == 1]
#trigrams_ = [t for t in trigram[bigram[sent]] if t.count(' ') == 2]
bigrams_ = bigram[sent]
trigrams_ = trigram[bigram[sent]]
trigram_sentences_project.append(trigrams_)