给定一个数据框,其中包含两个不同变量的重复测量值(即A1, A2, B1, B2
)
library(purrr)
library(tidyr)
library(broom)
set.seed(123)
my_df = data.frame(matrix(rnorm(80), nrow=10))
colnames(my_df) <- c("A1_BEFORE", "A1_AFTER", "A2_BEFORE", "A2_AFTER",
"B1_BEFORE", "B1_AFTER", "B2_BEFORE", "B2_AFTER")
如何使用函数式编程原理迭代相同变量的对(BEFORE,AFTER),并获得&#34; tidy&#34;结果?这是我的尝试:
bef <- select(my_df, contains("BEFORE"))
aft <- select(my_df, contains("AFTER"))
result <- map2(bef, aft, t.test, paired = T)
以上结果是多个嵌套列表。我怎么能得到一个整洁的&#34;结果?
result <- tidy(map2(bef, aft, t.test, paired = T))
结果&lt; - tidy(map2(bef,aft,t.test,paired = T))
tidy.list中的错误(map2(bef,aft,t.test,paired = T)): 没有为此列表识别整理方法 另外:警告信息: 在sort(names(x))== c(&#34; d&#34;,&#34; u&#34;,&#34; v&#34;)中: 较长的物体长度不是较短物体长度的倍数
答案 0 :(得分:2)
我们可以使用map_df
,因为它是list
map2(bef, aft, t.test, paired = TRUE) %>%
map_df(tidy)
# estimate statistic p.value parameter conf.low conf.high method
#1 -0.1339963 -0.4613684 0.65548187 9 -0.7909999 0.5230073 Paired t-test
#2 -0.7466034 -1.8820475 0.09250351 9 -1.6439954 0.1507885 Paired t-test
#3 -0.2304015 -0.5740849 0.57997286 9 -1.1382891 0.6774860 Paired t-test
#4 0.4860015 1.3468795 0.21095133 9 -0.3302644 1.3022674 Paired t-test
# alternative
#1 two.sided
#2 two.sided
#3 two.sided
#4 two.sided
或更紧凑
map2_df(bef, aft, ~tidy(t.test(.x, .y, paired = TRUE)))
答案 1 :(得分:2)
这是一种替代方法,在进行t检验之前整理数据。显然得到相同的结果,但这种方法标记了在最终输出中测试的变量。
仅更改为数据添加了一个id变量来索引重复的度量
除了broom
之外,还需要tidyr
和dplyr
library(tidyr, dplyr, broom)
使用tidyr
进行重组
my_tidy_df <- my_df %>%
mutate(id = row_number()) %>% # needs an id to group repeated measure
gather(var, value, -id) %>%
extract(var, c("var", "timepoint"), "([[:alnum:]]+)_([[:alnum:]]+)") %>%
spread(timepoint, value)
给出了这个结构
id var AFTER BEFORE
1 1 A1 -1.14854253 -0.9032172
2 1 A2 2.36114529 -0.6500869
3 1 B1 0.26204456 -0.5477532
4 1 B2 -1.34416890 -0.4696884
5 2 A1 0.53400345 1.2722203
然后,您可以对每个变量运行t检验,如下所示:
my_tidy_df %>%
group_by(var) %>%
do(broom::tidy(t.test(.$BEFORE, .$AFTER, data=., paired=T)))
结果:
# Groups: var [4]
var estimate statistic p.value parameter conf.low conf.high method alternative
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fctr> <fctr>
1 A1 0.16014628 0.3470400 0.7365381 9 -0.8837567 1.2040493 Paired t-test two.sided
2 A2 -0.99798993 -1.6271640 0.1381451 9 -2.3854407 0.3894609 Paired t-test two.sided
3 B1 0.04916586 0.1289803 0.9002097 9 -0.8131436 0.9114753 Paired t-test two.sided
4 B2 -0.06919212 -0.1833619 0.8585784 9 -0.9228233 0.7844391 Paired t-test two.sided