我想从R中的句子列表中提取对象所做的操作。给出一个小概述。
S = “The boy opened the box. He took the chocolates. He ate the chocolates.
He went to school”
我正在寻找如下组合:
Opened box
Took chocolates
Ate chocolates
Went school
我能够单独提取动词和名词。但无法找到一种方法将它们结合起来以获得这样的见解。
library(openNLP)
library(openNLPmodels.en)
library(NLP)
s = as.String("The boy opened the box. He took the chocolates. He ate the
chocolates. He went to school")
tagPOS<- function(x, ...) {
s <- as.String(x)
word_token_annotator<- Maxent_Word_Token_Annotator()
a2 <- Annotation(1L, "sentence", 1L, nchar(s))
a2 <- annotate(s, word_token_annotator, a2)
a3 <- annotate(s, Maxent_POS_Tag_Annotator(), a2)
a3w <- a3[a3$type == "word"]
POStags<- unlist(lapply(a3w$features, `[[`, "POS"))
POStagged<- paste(sprintf("%s/%s", s[a3w], POStags), collapse = ",")
list(POStagged = POStagged, POStags = POStags)
}
nouns = c("/NN", "/NNS","/NNP","/NNPS")
verbs = c("/VB","/VBD","/VBG","/VBN","/VBP","/VBZ")
s = tolower(s)
s = gsub("\n","",s)
s = gsub('"',"",s)
tags = tagPOS(s)
tags = tags$POStagged
tags = unlist(strsplit(tags, split=","))
nouns_present = tags[grepl(paste(nouns, collapse = "|"), tags)]
nouns_present = unique(nouns_present)
verbs_present = tags[grepl(paste(verbs, collapse = "|"), tags)]
verbs_present = unique(verbs_present)
nouns_present<- gsub("^(.*?)/.*", "\\1", nouns_present)
verbs_present = gsub("^(.*?)/.*", "\\1", verbs_present)
nouns_present =
paste("'",as.character(nouns_present),"'",collapse=",",sep="")
verbs_present =
paste("'",as.character(verbs_present),"'",collapse=",",sep="")
这个想法是构建一个网络图,在点击一个动词节点时,所有附加到它的对象都会出现,反之亦然。 对此的任何帮助都会很棒。
答案 0 :(得分:0)
我假设您也想在关键动作动词之前和之后得到这些词。我可以通过使用tidytext
包来实现这一点。 (参考链接:https://uc-r.github.io/word_relationships)
library(tidytext)
library(tidyverse)
#first create another column with divided up text strings by n(i set as every two words paired together)
mydf <-unnest_tokens(comments, "tokens", Response, token = "ngrams", n=2, to_lower = TRUE, drop = FALSE)
#remove stopwords:
mydf %>%
separate(tokens, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stop_words$word,
!word2 %in% stop_words$word,
) %>%
count(word1, word2, sort = TRUE) %>% view()