Akka Streams Reactive Kafka - 高负荷下的OutOfMemoryError

时间:2017-09-27 00:13:33

标签: scala akka akka-stream reactive-kafka akka-dispatcher

我正在运行Akka Streams Reactive Kafka应用程序,它应该在高负载下运行。运行应用程序大约10分钟后,应用程序将以OutOfMemoryError结束。我试图调试堆转储,发现akka.dispatch.Dispatcher占用了大约5GB的内存。以下是我的配置文件。

Akka版本:2.4.18

Reactive Kafka版本:2.4.18

1 application.conf

consumer {
num-consumers = "2"
c1 {
  bootstrap-servers = "localhost:9092"
  bootstrap-servers=${?KAFKA_CONSUMER_ENDPOINT1}
  groupId = "testakkagroup1"
  subscription-topic = "test"
  subscription-topic=${?SUBSCRIPTION_TOPIC1}
  message-type = "UserEventMessage"
  poll-interval = 100ms
  poll-timeout = 50ms
  stop-timeout = 30s
  close-timeout = 20s
  commit-timeout = 15s
  wakeup-timeout = 10s
  use-dispatcher = "akka.kafka.default-dispatcher"
  kafka-clients {
    enable.auto.commit = true
  }
}  

2 build.sbt

java -Xmx6g \
-Dcom.sun.management.jmxremote.port=27019 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false \
-Djava.rmi.server.hostname=localhost \
-Dzookeeper.host=$ZK_HOST \
-Dzookeeper.port=$ZK_PORT \
-jar ./target/scala-2.11/test-assembly-1.0.jar   

3. SourceSink演员:

class EventStream extends Actor with ActorLogging {

  implicit val actorSystem = context.system
  implicit val timeout: Timeout = Timeout(10 seconds)
  implicit val materializer = ActorMaterializer()
  val settings = Settings(actorSystem).KafkaConsumers

  override def receive: Receive = {
    case StartUserEvent(id) =>
      startStreamConsumer(consumerConfig("EventMessage"+".c"+id))
  }

  def startStreamConsumer(config: Map[String, String]) = {
    val consumerSource = createConsumerSource(config)

    val consumerSink = createConsumerSink()

    val messageProcessor = startMessageProcessor(actorA, actorB, actorC)

    log.info("Starting The UserEventStream processing")

    val future = consumerSource.map { message =>
      val m = s"${message.record.value()}"
      messageProcessor ? m
    }.runWith(consumerSink)

    future.onComplete {
      case _ => actorSystem.stop(messageProcessor)
    }
  }

  def startMessageProcessor(actorA: ActorRef, actorB: ActorRef, actorC: ActorRef) = {
    actorSystem.actorOf(Props(classOf[MessageProcessor], actorA, actorB, actorC))  
  }

  def createConsumerSource(config: Map[String, String]) = {
    val kafkaMBAddress = config("bootstrap-servers")
    val groupID = config("groupId")
    val topicSubscription = config("subscription-topic").split(',').toList
    println(s"Subscriptiontopics $topicSubscription")

    val consumerSettings = ConsumerSettings(actorSystem, new ByteArrayDeserializer, new StringDeserializer)
      .withBootstrapServers(kafkaMBAddress)
      .withGroupId(groupID)
      .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
      .withProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"true")

    Consumer.committableSource(consumerSettings, Subscriptions.topics(topicSubscription:_*))
  }

  def createConsumerSink() = {
    Sink.foreach(println)
  }
}    

在这种情况下,actorAactorBactorC正在进行一些业务逻辑处理和数据库交互。在处理Akka Reactive Kafka消费者时,我有什么遗漏,例如提交,错误或限制配置吗?因为查看堆转储,我猜测消息正在堆积。

1 个答案:

答案 0 :(得分:6)

我要改变的一件事是:

val future = consumerSource.map { message =>
  val m = s"${message.record.value()}"
  messageProcessor ? m
}.runWith(consumerSink)

在上面的代码中,您使用askmessageProcessor演员发送消息并期待回复,但为了让ask充当背压机制,您需要将其与mapAsync一起使用(更多信息在documentation中)。如下所示:

val future =
  consumerSource
    .mapAsync(parallelism = 5) { message =>
      val m = s"${message.record.value()}"
      messageProcessor ? m
    }
    .runWith(consumerSink)

根据需要调整并行度。