将数据框中的多个列展平为单个列

时间:2017-09-26 20:33:47

标签: python pandas dataframe

我有一个这样的数据框:

id    other_id_1    other_id_2    other_id_3
1     100           101           102
2     200           201           202
3     300           301           302

我想要这个:

id    other_id
1     100
1     101
1     102
2     200
2     201
2     202
3     300
3     301
3     302

我可以像这样轻松获得所需的输出:

to_keep = {}
for idx in df.index:
    identifier = df.loc[idx]['id']
    to_keep[identifier] = []
    for col in ['other_id_1', 'other_id_2', 'other_id_3']:
        row_val = df.loc[idx][col]
        to_keep[identifier].append(row_val)

这给了我这个:

{1: [100, 101, 102], 2: [200, 201, 202], 3: [300, 301, 302]}

我可以轻松地将其写入文件。然而,我正在努力在本地熊猫中做到这一点。我会想象这种看似转换会更直接,但我正在努力......

4 个答案:

答案 0 :(得分:2)

好吧,如果您还没有,请将id设置为索引:

>>> df
   id  other_id_1  other_id_2  other_id_3
0   1         100         101         102
1   2         200         201         202
2   3         300         301         302
>>> df.set_index('id', inplace=True)
>>> df
    other_id_1  other_id_2  other_id_3
id
1          100         101         102
2          200         201         202
3          300         301         302

然后,您只需使用pd.concat

>>> df = pd.concat([df[col] for col in df])
>>> df
id
1    100
2    200
3    300
1    101
2    201
3    301
1    102
2    202
3    302
dtype: int64

如果您需要排序的值:

>>> df.sort_values()
id
1    100
1    101
1    102
2    200
2    201
2    202
3    300
3    301
3    302
dtype: int64
>>>

答案 1 :(得分:2)

使用pd.wide_to_long

pd.wide_to_long(df,'other_id_',i='id',j='drop').reset_index().drop('drop',axis=1).sort_values('id')
    Out[36]: 
       id  other_id_
    0   1        100
    3   1        101
    6   1        102
    1   2        200
    4   2        201
    7   2        202
    2   3        300
    5   3        301
    8   3        302

unstack

df.set_index('id').unstack().reset_index().drop('level_0',1).rename(columns={0:'other_id'})

Out[43]: 
   id  other_id
0   1       100
1   2       200
2   3       300
3   1       101
4   2       201
5   3       301
6   1       102
7   2       202
8   3       302

答案 2 :(得分:1)

如果grid-row-end不是索引,请先将其设置为:

id

现在,调用df = df.set_index('id') df other_id_1 other_id_2 other_id_3 id 1 100 101 102 2 200 201 202 3 300 301 302 构造函数。您必须使用pd.DataFrame平铺索引。

np.repeat

答案 3 :(得分:1)

还有一个(或更确切地说是两个):)

pd.melt(df, id_vars='id', value_vars=['other_id_1', 'other_id_2', 'other_id_3'], value_name='other_id')\
.drop('variable', 1).sort_values(by = 'id')

选项2:

df.set_index('id').stack().reset_index(1,drop = True).reset_index()\ 
.rename(columns = {0:'other_id'})

两种方式

    id  other_id
0   1   100
1   1   101
2   1   102
3   2   200
4   2   201
5   2   202
6   3   300
7   3   301
8   3   302