这适用于实木复合地板
val sqlDF = spark.sql("SELECT DISTINCT field FROM parquet.`file-path'")
我尝试使用与Avro相同的方法,但即使我使用com.databricks.spark.avro
,它仍然会给我一个错误。
当我执行以下查询时:
val sqlDF = spark.sql("SELECT DISTINCT Source_Product_Classification FROM avro.`file path`")
我得到AnalysisException
。为什么呢?
org.apache.spark.sql.AnalysisException: Failed to find data source: avro. Please find an Avro package at http://spark.apache.org/third-party-projects.html;; line 1 pos 51
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.execution.datasources.ResolveDataSource$$anonfun$apply$1.applyOrElse(rules.scala:61)
at org.apache.spark.sql.execution.datasources.ResolveDataSource$$anonfun$apply$1.applyOrElse(rules.scala:38)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:61)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:61)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:60)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:307)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:305)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:58)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:307)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:305)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:58)
at org.apache.spark.sql.execution.datasources.ResolveDataSource.apply(rules.scala:38)
at org.apache.spark.sql.execution.datasources.ResolveDataSource.apply(rules.scala:37)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:69)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:67)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:50)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:63)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:592)
将格式名称更改为com.databricks.spark.avro
没有任何区别,查询失败。
val sqlDF = spark.sql("SELECT DISTINCT Source_Product_Classification FROM com.databricks.spark.avro`file-path`")
org.apache.spark.sql.catalyst.parser.ParseException:
extraneous input '.' expecting {<EOF>, ',', 'SELECT', 'FROM', 'ADD', 'AS', 'ALL', 'DISTINCT', 'WHERE', 'GROUP', 'BY', 'GROUPING', 'SETS', 'CUBE', 'ROLLUP', 'ORDER', 'HAVING', 'LIMIT', 'AT', 'OR', 'AND', 'IN', NOT, 'NO', 'EXISTS', 'BETWEEN', 'LIKE', RLIKE, 'IS', 'NULL', 'TRUE', 'FALSE', 'NULLS', 'ASC', 'DESC', 'FOR', 'INTERVAL', 'CASE', 'WHEN', 'THEN', 'ELSE', 'END', 'JOIN', 'CROSS', 'OUTER', 'INNER', 'LEFT', 'RIGHT', 'FULL', 'NATURAL', 'LATERAL', 'WINDOW', 'OVER', 'PARTITION', 'RANGE', 'ROWS', 'UNBOUNDED', 'PRECEDING', 'FOLLOWING', 'CURRENT', 'FIRST', 'LAST', 'ROW', 'WITH', 'VALUES', 'CREATE', 'TABLE', 'VIEW', 'REPLACE', 'INSERT', 'DELETE', 'INTO', 'DESCRIBE', 'EXPLAIN', 'FORMAT', 'LOGICAL', 'CODEGEN', 'CAST', 'SHOW', 'TABLES', 'COLUMNS', 'COLUMN', 'USE', 'PARTITIONS', 'FUNCTIONS', 'DROP', 'UNION', 'EXCEPT', 'MINUS', 'INTERSECT', 'TO', 'TABLESAMPLE', 'STRATIFY', 'ALTER', 'RENAME', 'ARRAY', 'MAP', 'STRUCT', 'COMMENT', 'SET', 'RESET', 'DATA', 'START', 'TRANSACTION', 'COMMIT', 'ROLLBACK', 'MACRO', 'IF', 'DIV', 'PERCENT', 'BUCKET', 'OUT', 'OF', 'SORT', 'CLUSTER', 'DISTRIBUTE', 'OVERWRITE', 'TRANSFORM', 'REDUCE', 'USING', 'SERDE', 'SERDEPROPERTIES', 'RECORDREADER', 'RECORDWRITER', 'DELIMITED', 'FIELDS', 'TERMINATED', 'COLLECTION', 'ITEMS', 'KEYS', 'ESCAPED', 'LINES', 'SEPARATED', 'FUNCTION', 'EXTENDED', 'REFRESH', 'CLEAR', 'CACHE', 'UNCACHE', 'LAZY', 'FORMATTED', 'GLOBAL', TEMPORARY, 'OPTIONS', 'UNSET', 'TBLPROPERTIES', 'DBPROPERTIES', 'BUCKETS', 'SKEWED', 'STORED', 'DIRECTORIES', 'LOCATION', 'EXCHANGE', 'ARCHIVE', 'UNARCHIVE', 'FILEFORMAT', 'TOUCH', 'COMPACT', 'CONCATENATE', 'CHANGE', 'CASCADE', 'RESTRICT', 'CLUSTERED', 'SORTED', 'PURGE', 'INPUTFORMAT', 'OUTPUTFORMAT', DATABASE, DATABASES, 'DFS', 'TRUNCATE', 'ANALYZE', 'COMPUTE', 'LIST', 'STATISTICS', 'PARTITIONED', 'EXTERNAL', 'DEFINED', 'REVOKE', 'GRANT', 'LOCK', 'UNLOCK', 'MSCK', 'REPAIR', 'RECOVER', 'EXPORT', 'IMPORT', 'LOAD', 'ROLE', 'ROLES', 'COMPACTIONS', 'PRINCIPALS', 'TRANSACTIONS', 'INDEX', 'INDEXES', 'LOCKS', 'OPTION', 'ANTI', 'LOCAL', 'INPATH', 'CURRENT_DATE', 'CURRENT_TIMESTAMP', IDENTIFIER, BACKQUOTED_IDENTIFIER}(line 1, pos 65)
== SQL ==
SELECT DISTINCT Source_Product_Classification FROM com.databricks.spark.avro`/uat/myfile`
-----------------------------------------------------------------^^^
at org.apache.spark.sql.catalyst.parser.ParseException.withCommand(ParseDriver.scala:197)
at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parse(ParseDriver.scala:99)
at org.apache.spark.sql.execution.SparkSqlParser.parse(SparkSqlParser.scala:45)
at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parsePlan(ParseDriver.scala:53)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:592)
... 48 elided
答案 0 :(得分:4)
Spark SQL通过单独的spark-avro模块支持avro格式。
用于从Spark SQL读取和编写Avro数据的库。
请注意spark-avro
是一个seaprate模块,默认情况下不包含在Spark中。
您应该使用spark-submit --packages
加载模块,例如
$ bin/spark-shell --packages com.databricks:spark-avro_2.11:3.2.0
答案 1 :(得分:2)
Jaceks回答总体上是有效的,但是在我的环境中,由于晦涩的原因,它无法正常工作。而spark-shell --packages com.databricks:spark-avro_2.11:3.2.0
挂了很长时间却没有任何结果。
我使用--jars
选项和spark-shell
来解决了这个问题
步骤:
1)转到https://mvnrepository.com/artifact/com.databricks/spark-avro_2.11/4.0.0 复制jar http://central.maven.org/maven2/com/databricks/spark-avro_2.11/4.0.0/spark-avro_2.11-4.0.0.jar的链接地址
2)wget http://central.maven.org/maven2/com/databricks/spark-avro_2.11/4.0.0/spark-avro_2.11-4.0.0.jar
。
3)spark-shell --jars <pathwhere you downloaded jar file>/spark-avro_2.11-4.0.0.jar
4)spark.read.format("com.databricks.spark.avro").load("s3://MYAVROLOCATION.avro")
已转换为数据框并能够打印。
就您而言,一旦获得数据框,就可以按自己的方式执行sql。
注意: :如果您不使用spark-shell,则可以使用sbt或ubuntu使用spark-avro_2.11-4.0.0.jar来制作uber jar。行家坐标。
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.11</artifactId>
<version>4.0.0</version>
</dependency>
注意:Avro数据源是在病房的Spark 2.4中引入的。.SparkSPARK-24768 Have a built-in AVRO data source implementation
这意味着以上所有内容不再是必需的。 参见spark-release-2-4-0 release notes
答案 2 :(得分:1)
Spark Avro集成: 通过使用Spark,我们可以使用 spark-avro 模块集成 avro 格式。 spark-avro 库最初由databricks作为开放源代码库开发。 spark-avro 模块是外部模块,默认情况下不包含在 spark-submit 或 spark-shell 中。因此,在外部,我们需要在提交Spark作业时指定。
在以下部分中,我将说明如何集成Spark和Avro数据格式。
火花版本> 2.4 从Spark 2.4版本开始,Spark SQL为读取和写入Apache Avro数据提供了内置支持。
Maven依赖项: https://mvnrepository.com/artifact/org.apache.spark/spark-avro
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-avro_2.12</artifactId>
<version>2.4.5</version>
</dependency>
火花提交:
./bin/spark-submit --packages org.apache.spark:spark-avro_2.12:2.4.5 ...
SparkShell:
./bin/spark-shell --packages org.apache.spark:spark-avro_2.12:2.4.5 ...
示例:
SparkAvroWriteExample.scala
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
case class Employee( id:Long, name:String, salary:Float, deptId: Int)
object SparkAvroWriteExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setIfMissing("spark.master", "local[*]").setAppName("Spark Avro Read Examples")
val spark = SparkSession.builder().config(conf).getOrCreate();
val employeeList = List(Employee(1, "Ranga", 10000, 1),
Employee(2, "Vinod", 1000, 1),
Employee(3, "Nishanth", 500000, 2),
Employee(4, "Manoj", 25000, 1),
Employee(5, "Yashu", 1600, 1),
Employee(6, "Raja", 50000, 2)
);
val employeeDF = spark.createDataFrame(employeeList);
employeeDF.coalesce(1).write.format("avro").mode("overwrite").save("employees.avro");
spark.close();
}
}
SparkAvroReadExample.scala
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
object SparkAvroReadExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setIfMissing("spark.master", "local[*]").setAppName("Spark Avro Read Examples")
val spark = SparkSession.builder().config(conf).getOrCreate();
val employeeDF = spark.read.format("avro").load("employees.avro");
employeeDF.printSchema();
employeeDF.foreach(employee => {println(employee);});
spark.close();
}
}
Github链接 https://github.com/rangareddy/ranga-spark-poc/tree/master/spark-2.4/SparkAvro
火花版本<2.4 在Spark版本<2.4中,显式地,我们需要将avro格式指定为 com.databricks.spark.avro ,否则,我们将获得 org.apache.spark.sql.AnalysisException:无法找到数据源:avro。错误。
Maven依赖项:
Spark Version Compatible version of Avro Data Source for Spark
1.2 0.2.0
1.3 1.0.0
1.4+ 2.0.1
2.0 - 2.1 3.2.0
2.2 - 2.3 4.0.0
https://mvnrepository.com/artifact/com.databricks/spark-avro
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.11</artifactId>
<version>4.0.0</version>
</dependency>
火花提交:
./bin/spark-submit --packages com.databricks:spark-avro_2.11:4.0.0 ...
SparkShell:
./bin/spark-shell --packages com.databricks:spark-avro_2.11:4.0.0 ...
示例:
SparkAvroWriteExample.scala
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
case class Employee( id:Long, name:String, salary:Float, deptId: Int)
object SparkAvroWriteExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setIfMissing("spark.master", "local[*]").setAppName("Spark Avro Read Examples")
val spark = SparkSession.builder().config(conf).getOrCreate();
val employeeList = List(Employee(1, "Ranga", 10000, 1),
Employee(2, "Vinod", 1000, 1),
Employee(3, "Nishanth", 500000, 2),
Employee(4, "Manoj", 25000, 1),
Employee(5, "Yashu", 1600, 1),
Employee(6, "Raja", 50000, 2)
);
val employeeDF = spark.createDataFrame(employeeList);
employeeDF.coalesce(1).write.format("com.databricks.spark.avro").mode("overwrite").save("employees.avro");
spark.close();
}
}
SparkAvroReadExample.scala
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
object SparkAvroReadExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setIfMissing("spark.master", "local[*]").setAppName("Spark Avro Read Examples")
val spark = SparkSession.builder().config(conf).getOrCreate();
val employeeDF = spark.read.format("com.databricks.spark.avro").load("employees.avro");
employeeDF.printSchema();
employeeDF.foreach(employee => {println(employee);});
spark.close();
}
}
Github链接 https://github.com/rangareddy/ranga-spark-poc/tree/master/spark-2.3/SparkAvro
那是所有人!