答案 0 :(得分:3)
您必须使用新架构替换该列。 ArrayType采用两个参数elementType和containsNull。
from pyspark.sql.types import *
from pyspark.sql.functions import udf
x = [("a",["b","c","d","e"]),("g",["h","h","d","e"])]
schema = StructType([StructField("key",StringType(), nullable=True),
StructField("values", ArrayType(StringType(), containsNull=False))])
df = spark.createDataFrame(x,schema = schema)
df.printSchema()
new_schema = ArrayType(StringType(), containsNull=True)
udf_foo = udf(lambda x:x, new_schema)
df.withColumn("values",udf_foo("values")).printSchema()
root
|-- key: string (nullable = true)
|-- values: array (nullable = true)
| |-- element: string (containsNull = false)
root
|-- key: string (nullable = true)
|-- values: array (nullable = true)
| |-- element: string (containsNull = true)
答案 1 :(得分:0)
这是一个有用的示例,您可以在其中更改每列的架构 假设您想要相同的类型
from pyspark.sql.types import Row
from pyspark.sql.functions import *
df = sc.parallelize([
Row(isbn=1, count=1, average=10.6666666),
Row(isbn=2, count=1, average=11.1111111)
]).toDF()
df.printSchema()
df=df.select(*[col(x).cast('float') for x in df.columns]).printSchema()
输出:
root
|-- average: double (nullable = true)
|-- count: long (nullable = true)
|-- isbn: long (nullable = true)
root
|-- average: float (nullable = true)
|-- count: float (nullable = true)
|-- isbn: float (nullable = true)