Tensorflow Python Type错误让我明白什么是错的

时间:2017-09-26 14:35:55

标签: tensorflow

您好Tensorflow的专家!

我主要从示例中复制以下代码。我的NN中有38个输入和4个输出。我想教NN并做出预测。但如果我运行该程序,我会收到一个错误说:

  

b = tf.Variable(tf.float32,[None,n_class])   TypeError:预期的二进制或unicode字符串,得到tf.float32

与:

  

TypeError:无法将类型对象转换为Tensor。内容:。考虑将元素转换为支持的类型。

import csv
import matplotlib as plt
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split

with open('input.csv', "r") as myfile:
    reader = csv.reader(myfile, delimiter=",")
    data = list(reader)
    data = np.asarray(data)

x = data[:,0:39]
y = data[:,39:43]

train_x, test_x, train_y, test_y = train_test_split(x,y, test_size=0.05)

learning_rate = 0.3
training_epochs = 1000
cost_history = np.empty(shape=[1], dtype=float)
n_dim = x.shape[1]
print("n_dim =" , n_dim)
n_class = 2
# model_path =

n_hidden_1 = 60
n_hidden_2 = 60
n_hidden_3 = 60

X = tf.placeholder(tf.float32, [None, n_dim])
W = tf.Variable(tf.zeros([n_dim, n_class]))
b = tf.Variable(tf.float32, [None, n_class])
y_ = tf.placeholder(tf.float32, [None, n_class])

def multilayer_perceptron(x, weights, biases):
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.sigmoid(layer_1)

    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.sigmoid(layer_2)

    layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
    layer_3 = tf.nn.relu(layer_3)

    out_layer = tf.matmul(layer_3, weights['out']) + biases['out']
    return out_layer

weights = {
    'h1': tf.Variable(tf.truncated_normal([n_dim, n_hidden_1])),
    'h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2])),
    'h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3])),
    'out': tf.Variable(tf.truncated_normal([n_hidden_3, n_class]))
}
biases = {
    'b1' : tf.Variable(tf.truncated_normal([n_hidden_1])),
    'b2' : tf.Variable(tf.truncated_normal([n_hidden_2])),
    'b3' : tf.Variable(tf.truncated_normal([n_hidden_3])),
    'out' : tf.Variable(tf.truncated_normal([n_class]))
}

init = tf.global_variables_initializer()

saver = tf.train.Saver()

cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_func)

sess = tf.Session()
sess.run(init)

mse_history = []
accuracy_history = []

for epoch in range(training_epochs):
    sess.run(training_step, feed_dict={x: train_x, y_: train_y})
    cost = sess.run(cost_func, feed_dict={x: train_x, y_: train_y})
    cost_history = np.append(cost_history, cost)
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    pred_y = sess.run(y, feed_dict={x: test_x})
    mse = tf.reduce_mean(tf.square(pred_y - test_y))
    mse_ = sess.run(mse)
    mse_history.append(mse_)
    accuracy = (sess.run(accuracy, feed_dict={x: train_x, y_: train_y}))
    accuracy_history.append(accuracy)

    print('epoch: ', epoch, ' - cost: ', cost, " - MSE: ", mse_, " - Train Accuracy: ", accuracy)

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Test Accuracy: ", (sess.run(accuracy, feed_dict={x: test_x, y_: test_y})))

pred_y = sess.run(y, feed_dict={x: test_x})
mse = tf.reduce_mean(tf.square((pred_y - test_y)))
print ("MSE %.4f" % sess.run(mse))

您有什么建议吗?

0 个答案:

没有答案