如何在张量流中实现早期停止

时间:2017-09-26 14:04:04

标签: python tensorflow neural-network

def train():
# Model
model = Model()

# Loss, Optimizer
global_step = tf.Variable(1, dtype=tf.int32, trainable=False, name='global_step')
loss_fn = model.loss()
optimizer = tf.train.AdamOptimizer(learning_rate=TrainConfig.LR).minimize(loss_fn, global_step=global_step)

# Summaries
summary_op = summaries(model, loss_fn)

with tf.Session(config=TrainConfig.session_conf) as sess:

    # Initialized, Load state
    sess.run(tf.global_variables_initializer())
    model.load_state(sess, TrainConfig.CKPT_PATH)

    writer = tf.summary.FileWriter(TrainConfig.GRAPH_PATH, sess.graph)

    # Input source
    data = Data(TrainConfig.DATA_PATH)

    loss = Diff()
    for step in xrange(global_step.eval(), TrainConfig.FINAL_STEP):

            mixed_wav, src1_wav, src2_wav, _ = data.next_wavs(TrainConfig.SECONDS, TrainConfig.NUM_WAVFILE, step)

            mixed_spec = to_spectrogram(mixed_wav)
            mixed_mag = get_magnitude(mixed_spec)

            src1_spec, src2_spec = to_spectrogram(src1_wav), to_spectrogram(src2_wav)
            src1_mag, src2_mag = get_magnitude(src1_spec), get_magnitude(src2_spec)

            src1_batch, _ = model.spec_to_batch(src1_mag)
            src2_batch, _ = model.spec_to_batch(src2_mag)
            mixed_batch, _ = model.spec_to_batch(mixed_mag)

            # Initializae our callback.
            #early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.5)


            l, _, summary = sess.run([loss_fn, optimizer, summary_op],
                                     feed_dict={model.x_mixed: mixed_batch, model.y_src1: src1_batch,
                                                model.y_src2: src2_batch})

            loss.update(l)
            print('step-{}\td_loss={:2.2f}\tloss={}'.format(step, loss.diff * 100, loss.value))

            writer.add_summary(summary, global_step=step)

            # Save state
            if step % TrainConfig.CKPT_STEP == 0:
                tf.train.Saver().save(sess, TrainConfig.CKPT_PATH + '/checkpoint', global_step=step)

    writer.close()

我有这个神经网络代码,用于将音乐与.wav文件中的语音分开。 如何引入早期停止算法来停止列车部分?我看到一些谈论ValidationMonitor的项目。有人能帮助我吗?

4 个答案:

答案 0 :(得分:9)

ValidationMonitor被标记为已弃用。不推荐。但你仍然可以使用它。 这是一个如何创建一个的例子:

    validation_monitor = monitors.ValidationMonitor(
        input_fn=functools.partial(input_fn, subset="evaluation"),
        eval_steps=128,
        every_n_steps=88,
        early_stopping_metric="accuracy",
        early_stopping_rounds = 1000
    )

你可以自己实现,这是我的实现:

          if (loss_value < self.best_loss):
            self.stopping_step = 0
            self.best_loss = loss_value
          else:
            self.stopping_step += 1
          if self.stopping_step >= FLAGS.early_stopping_step:
            self.should_stop = True
            print("Early stopping is trigger at step: {} loss:{}".format(global_step,loss_value))
            run_context.request_stop()

答案 1 :(得分:2)

这是我实施的早停措施,您可以对其进行调整:

可以在训练过程的某些阶段(例如在每个时期结束时)应用提前停止。特别;就我而言我监视每个时期的测试(验证)损失,并且在20个时期(self.require_improvement= 20)之后测试损失没有改善之后,训练被中断了。

您可以将最大纪元设置为10000或20000或任何您想要的值(self.max_epochs = 10000)。

  self.require_improvement= 20
  self.max_epochs = 10000

这是我的训练功能,可以在其中使用提前停止功能:

def火车(自己):

# training data
    train_input = self.Normalize(self.x_train)
    train_output = self.y_train.copy()            
#===============
    save_sess=self.sess # this used to compare the result of previous sess with actual one
# ===============
  #costs history :
    costs = []
    costs_inter=[]
# =================
  #for early stopping :
    best_cost=1000000 
    stop = False
    last_improvement=0
# ================
    n_samples = train_input.shape[0] # size of the training set
# ===============
   #train the mini_batches model using the early stopping criteria
    epoch = 0
    while epoch < self.max_epochs and stop == False:
        #train the model on the traning set by mini batches
        #suffle then split the training set to mini-batches of size self.batch_size
        seq =list(range(n_samples))
        random.shuffle(seq)
        mini_batches = [
            seq[k:k+self.batch_size]
            for k in range(0,n_samples, self.batch_size)
        ]

        avg_cost = 0. # The average cost of mini_batches
        step= 0

        for sample in mini_batches:

            batch_x = x_train.iloc[sample, :]
            batch_y =train_output.iloc[sample, :]
            batch_y = np.array(batch_y).flatten()

            feed_dict={self.X: batch_x,self.Y:batch_y, self.is_train:True}

            _, cost,acc=self.sess.run([self.train_step, self.loss_, self.accuracy_],feed_dict=feed_dict)
            avg_cost += cost *len(sample)/n_samples 
            print('epoch[{}] step [{}] train -- loss : {}, accuracy : {}'.format(epoch,step, avg_cost, acc))
            step += 100

        #cost history since the last best cost
        costs_inter.append(avg_cost)

        #early stopping based on the validation set/ max_steps_without_decrease of the loss value : require_improvement
        if avg_cost < best_cost:
            save_sess= self.sess # save session
            best_cost = avg_cost
            costs +=costs_inter # costs history of the validatio set
            last_improvement = 0
            costs_inter= []
        else:
            last_improvement +=1
        if last_improvement > self.require_improvement:
            print("No improvement found during the ( self.require_improvement) last iterations, stopping optimization.")
            # Break out from the loop.
            stop = True
            self.sess=save_sess # restore session with the best cost

        ## Run validation after every epoch : 
        print('---------------------------------------------------------')
        self.y_validation = np.array(self.y_validation).flatten()
        loss_valid, acc_valid = self.sess.run([self.loss_,self.accuracy_], 
                                              feed_dict={self.X: self.x_validation, self.Y: self.y_validation,self.is_train: True})
        print("Epoch: {0}, validation loss: {1:.2f}, validation accuracy: {2:.01%}".format(epoch + 1, loss_valid, acc_valid))
        print('---------------------------------------------------------')

        epoch +=1

我们可以在此处恢复重要代码:

def train(self):
  ...
      #costs history :
        costs = []
        costs_inter=[]
      #for early stopping :
        best_cost=1000000 
        stop = False
        last_improvement=0
       #train the mini_batches model using the early stopping criteria
        epoch = 0
        while epoch < self.max_epochs and stop == False:
            ...
            for sample in mini_batches:
            ...                   
            #cost history since the last best cost
            costs_inter.append(avg_cost)

            #early stopping based on the validation set/ max_steps_without_decrease of the loss value : require_improvement
            if avg_cost < best_cost:
                save_sess= self.sess # save session
                best_cost = avg_cost
                costs +=costs_inter # costs history of the validatio set
                last_improvement = 0
                costs_inter= []
            else:
                last_improvement +=1
            if last_improvement > self.require_improvement:
                print("No improvement found during the ( self.require_improvement) last iterations, stopping optimization.")
                # Break out from the loop.
                stop = True
                self.sess=save_sess # restore session with the best cost
            ...
            epoch +=1

希望它将对某人有所帮助:)。

答案 2 :(得分:1)

对于使用tf.keras的自定义训练循环,您可以这样实现:

def main(early_stopping, epochs=50):
    loss_history = deque(maxlen=early_stopping + 1)

    for epoch in range(epochs):
        fit(epoch)

        loss_history.append(test_loss.result().numpy())

        if len(loss_history) > early_stopping:
            if loss_history.popleft() < min(loss_history):
                print(f'\nEarly stopping. No validation loss '
                      f'improvement in {early_stopping} epochs.')
                break

在每个时代结束时,验证损失都会在collections.deque中重新计算。假设early_stopping设置为3。在每个时期,将倒数第四个损失与最后三个损失进行比较。如果这3个损失都没有改善,则循环会中断。

这是完整的代码:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow_datasets as tfds
import tensorflow as tf
from collections import deque

data, info = tfds.load('iris', split='train',
                       as_supervised=True,
                       shuffle_files=True,
                       with_info=True)

dataset = data.shuffle(info.splits['train'].num_examples)

train_dataset = dataset.take(120).batch(4)
test_dataset = dataset.skip(120).take(30).batch(4)


model = tf.keras.Sequential([
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(16, activation='relu'),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])


loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

train_loss = tf.keras.metrics.Mean()
test_loss = tf.keras.metrics.Mean()

train_acc = tf.keras.metrics.SparseCategoricalAccuracy()
test_acc = tf.keras.metrics.SparseCategoricalAccuracy()


opt = tf.keras.optimizers.Adam(learning_rate=1e-3)


@tf.function
def train_step(inputs, labels):
    with tf.GradientTape() as tape:
        logits = model(inputs)
        loss = loss_object(labels, logits)

    gradients = tape.gradient(loss, model.trainable_variables)
    opt.apply_gradients(zip(gradients, model.trainable_variables))
    train_loss(loss)
    train_acc(labels, logits)


@tf.function
def test_step(inputs, labels):
    logits = model(inputs)
    loss = loss_object(labels, logits)
    test_loss(loss)
    test_acc(labels, logits)


def fit(epoch):
    template = 'Epoch {:>2} Train Loss {:.4f} Test Loss {:.4f} ' \
               'Train Acc {:.2%} Test Acc {:.2%}'

    train_loss.reset_states()
    test_loss.reset_states()
    train_acc.reset_states()
    test_acc.reset_states()

    for X_train, y_train in train_dataset:
        train_step(X_train, y_train)

    for X_test, y_test in test_dataset:
        test_step(X_test, y_test)

    print(template.format(
        epoch + 1,
        train_loss.result(),
        test_loss.result(),
        train_acc.result(),
        test_acc.result()
    ))


def main(early_stopping, epochs=50):
    loss_history = deque(maxlen=early_stopping + 1)

    for epoch in range(epochs):
        fit(epoch)

        loss_history.append(test_loss.result().numpy())

        if len(loss_history) > early_stopping:
            if loss_history.popleft() < min(loss_history):
                print(f'\nEarly stopping. No validation loss '
                      f'improvement in {early_stopping} epochs.')
                break

if __name__ == '__main__':
    main(epochs=100, early_stopping=3)

以下是输出:

Epoch  1 Train Loss 1.0368 Test Loss 0.9507 Train Acc 66.67% Test Acc 76.67%
Epoch  2 Train Loss 1.0013 Test Loss 0.9673 Train Acc 65.83% Test Acc 70.00%
Epoch  3 Train Loss 0.9582 Test Loss 1.0055 Train Acc 64.17% Test Acc 56.67%
Epoch  4 Train Loss 0.9116 Test Loss 0.8510 Train Acc 63.33% Test Acc 70.00%
Epoch  5 Train Loss 0.8401 Test Loss 0.8632 Train Acc 67.50% Test Acc 76.67%
Epoch  6 Train Loss 0.8114 Test Loss 0.7535 Train Acc 72.50% Test Acc 80.00%
Epoch  7 Train Loss 0.8105 Test Loss 0.8240 Train Acc 68.33% Test Acc 80.00%
Epoch  8 Train Loss 0.7956 Test Loss 0.7855 Train Acc 81.67% Test Acc 93.33%
Epoch  9 Train Loss 0.7740 Test Loss 0.8094 Train Acc 89.17% Test Acc 73.33%

Early stopping. No validation loss improvement in 3 epochs.

如您所见,最后的最佳验证损失是在第6个时期,然后有3个损失,没有任何改善。然后循环因此中断了。

答案 3 :(得分:0)

由于TensorFlow版本r1.10的早期停止挂钩可用于early_stopping.py中的estimator API(请参阅github)。

例如tf.contrib.estimator.stop_if_no_decrease_hook(请参阅docs