我想制作一个含有更多n-gram的word2vec模型。正如我发现的那样,gensim.models.phrase中的短语类可以找到我想要的短语,并且可以在语料库上使用短语并使用它的word2vec训练函数的结果模型。
首先,我做了类似下面的事情,就像gensim documentation中的示例代码一样。
class MySentences(object):
def __init__(self, dirname):
self.dirname = dirname
def __iter__(self):
for fname in os.listdir(self.dirname):
for line in open(os.path.join(self.dirname, fname)):
yield word_tokenize(line)
sentences = MySentences('sentences_directory')
bigram = gensim.models.Phrases(sentences)
model = gensim.models.Word2Vec(bigram['sentences'], size=300, window=5, workers=8)
已创建模型,但评估和警告没有任何好结果:
WARNING : train() called with an empty iterator (if not intended, be sure to provide a corpus that offers restartable iteration = an iterable)
我搜索了它,然后找到https://groups.google.com/forum/#!topic/gensim/XWQ8fPMFSi0并更改了我的代码:
class MySentences(object):
def __init__(self, dirname):
self.dirname = dirname
def __iter__(self):
for fname in os.listdir(self.dirname):
for line in open(os.path.join(self.dirname, fname)):
yield word_tokenize(line)
class PhraseItertor(object):
def __init__(self, my_phraser, data):
self.my_phraser, self.data = my_phraser, data
def __iter__(self):
yield self.my_phraser[self.data]
sentences = MySentences('sentences_directory')
bigram_transformer = gensim.models.Phrases(sentences)
bigram = gensim.models.phrases.Phraser(bigram_transformer)
corpus = PhraseItertor(bigram, sentences)
model = gensim.models.Word2Vec(corpus, size=300, window=5, workers=8)
我收到错误:
Traceback (most recent call last):
File "/home/fatemeh/Desktop/Thesis/bigramModeler.py", line 36, in <module>
model = gensim.models.Word2Vec(corpus, size=300, window=5, workers=8)
File "/home/fatemeh/.local/lib/python3.4/site-packages/gensim/models/word2vec.py", line 478, in init
self.build_vocab(sentences, trim_rule=trim_rule)
File "/home/fatemeh/.local/lib/python3.4/site-packages/gensim/models/word2vec.py", line 553, in build_vocab
self.scan_vocab(sentences, progress_per=progress_per, trim_rule=trim_rule) # initial survey
File "/home/fatemeh/.local/lib/python3.4/site-packages/gensim/models/word2vec.py", line 575, in scan_vocab
vocab[word] += 1
TypeError: unhashable type: 'list'
现在我想知道我的代码出了什么问题。
答案 0 :(得分:0)
我在Gensim GoogleGroup询问了我的问题,Mr Gordon Mohr回答了我:
您通常不希望
__iter__()
方法执行单个操作yield
。它应该返回一个迭代器对象(准备返回多个) 对象通过next()
或StopIteration异常)。一种方法 迭代器是使用yield
将方法视为a &#39;发电机&#39; - 但通常需要yield
在循环内。但我现在看到你引用的主题中的我的示例代码
__iter__()
返回行的错误:它不应该是 返回原始的phrasifier,但已经是一个 start-as-an-iterator,使用iter()
内置方法。那 是的,那个例子应该是:class PhrasingIterable(object): def __init__(self, phrasifier, texts): self. phrasifier, self.texts = phrasifier, texts def __iter__(): return iter(phrasifier[texts])
对您的变体进行类似更改可能会解决
TypeError: iter() returned non-iterator of type 'TransformedCorpus'
错误。