"无"使用DataSet API Tensorflow时,dimension会导致错误

时间:2017-09-25 21:15:23

标签: tensorflow

我正在尝试使用数据集API来提供最新Tensorflow official models release中的resnet。

基本代码如下:

with tf.Session() as sess:
    print("initialized")

    features_placeholder = tf.placeholder(prepared_x.dtype, prepared_x.shape)
    labels_placeholder = tf.placeholder(dtype=tf.float32, shape=prepared_t.shape)

    dataset = tf.contrib.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
    dataset = dataset.shuffle(buffer_size=10000)
    dataset = dataset.batch(batch_size)
    dataset = dataset.repeat(num_epoch)

    iterator = dataset.make_initializable_iterator()

    (next_x_test, next_t_test) = iterator.get_next()
    next_x_test = tf.to_float(next_x_test, name='ToFloat')


    sess.run(iterator.initializer, feed_dict={features_placeholder: prepared_x,
                                              labels_placeholder: prepared_t})


    print(next_x_test)
    print(next_t_test)

    model = resnet_v2(resnet_size=50, num_classes=num_bins)

    output = model(next_x_test,is_training=True)

编译

时,最后一行会引发错误
  

ValueError:Dense输入的最后一个维度应该是   定义。找到None

,它引用了resent_v2定义,其中最后一层是一个密集层。

如何断言我的特征张量的形状?

1 个答案:

答案 0 :(得分:0)

如果恰好未定义,请使用tensor.set_shape设置张量的形状。